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It is always a source of pleasure when a great and beautiful idea proves to be correct in
actual fact. Albert Einstein [letter to Sigmund Freud]

The answer to all these questions may not be simple. I know there are some scientists who
go about preaching that Nature always takes on the simplest solutions. Yet the simplest
by far would be nothing, that there would be nothing at all in the universe. Nature is far
more interesting than that, so I refuse to go along thinking it always has to be simple.

Richard Feynman





Contents

Preface page xiii
Notation, important formulae and physical constants xiv

1 Introduction 1
1.1 The need for a theory of gravity 1
1.2 Gravitation and inertia: the Equivalence Principle in mechanics 3
1.3 The Equivalence Principle and optics 9
1.4 Curved surfaces 14
Further reading 16
Problems 16

2 Special Relativity, non-inertial effects and electromagnetism 18
2.1 Special Relativity: Einstein’s train 18
2.2 Twin paradox: accelerations 26
2.3 Rotating frames: the Sagnac effect 29
2.4 Inertia: Newton versus Mach 34
2.5 Thomas precession 36
2.6 Electromagnetism 40
2.7 Principle of General Covariance 43
Further reading 45
Problems 46

3 Differential geometry I: vectors, differential forms and absolute

differentiation 47
3.1 Space-time as a differentiable manifold 47
3.2 Vectors and vector fields 49
3.3 One-forms 55
3.4 Tensors 61
3.5 Differential forms: Hodge duality 65
3.6 Exterior derivative operator: generalised Stokes’ theorem 72
3.7 Maxwell’s equations and differential forms 77
3.8 Metric tensor 79
3.9 Absolute differentiation: connection forms 86
3.10 Parallel transport 93
3.11 Some relations involving connection coefficients 97



3.12 Examples 102
3.13 General formula for connection coefficients 107
Further reading 110
Problems 110

4 Differential geometry II: geodesics and curvature 112
4.1 Autoparallel curves and geodesics 112
4.2 Geodesic coordinates 119
4.3 Curvature 121
4.4 Symmetries of the Riemann tensor 125
4.5 Ricci tensor and curvature scalar 126
4.6 Curvature 2-form 129
4.7 Geodesic deviation 132
4.8 Bianchi identities 134
Further reading 135
Problems 135

5 Einstein field equations, the Schwarzschild solution and experimental

tests of General Relativity 137
5.1 Newtonian limit 137
5.2 Einstein field equations 139
5.3 Schwarzschild solution 146
5.4 Time dependence and spherical symmetry: Birkhoff’s theorem 151
5.5 Gravitational red-shift 154
5.6 Geodesics in Schwarzschild space-time 158
5.7 Precession of planetary orbits 160
5.8 Deflection of light 162
5.9 Note on PPN formalism 164
5.10 Gravitational lenses 165
5.11 Radar echoes from planets 169
5.12 Radial motion in a Schwarzschild field: black holes – frozen stars 173
5.13 A gravitational clock effect 176
Further reading 178
Problems 178

6 Gravitomagnetic effects: gyroscopes and clocks 180
6.1 Linear approximation 180
6.2 Precession of gyroscopes: the Lense–Thirring effect 191
6.3 Gravitomagnetism 200
6.4 Gravitomagnetic clock effect 204
6.5 Fermi–Walker transport: tetrad formalism 207
6.6 Lie derivatives, Killing vectors and groups of motion 211
6.7 Static and stationary space-times 219

x Contents



6.8 Killing vectors and conservation laws 223
Further reading 225
Problems 226

7 Gravitational collapse and black holes 227
7.1 The interior Schwarzschild solution and the

Tolman–Oppenheimer–Volkoff equation 228
7.2 Energy density and binding energy 237
7.3 Degenerate stars: white dwarfs and neutron stars 243
7.4 Schwarzschild orbits: Eddington–Finkelstein coordinates 251
7.5 Kruskal–Szekeres coordinates 255
7.6 Einstein–Rosen bridge and wormholes 259
7.7 Conformal treatment of infinity: Penrose diagrams 261
7.8 Rotating black holes: Kerr solution 265
7.9 The ergosphere and energy extraction from a black hole 271
7.10 Surface gravity 280
7.11 Thermodynamics of black holes and further observations 287
7.12 Global matters: singularities, trapped surfaces and Cosmic Censorship 291
Further reading 293
Problems 294

8 Action principle, conservation laws and the Cauchy problem 295
8.1 Gravitational action and field equations 295
8.2 Energy-momentum pseudotensor 300
8.3 Cauchy problem 304
Further reading 309
Problems 309

9 Gravitational radiation 310
9.1 Weak field approximation 310
9.2 Radiation from a rotating binary source 317
9.3 Parallels between electrodynamics and General Relativity:

Petrov classification 328
Further reading 340
Problems 340

10 Cosmology 341
10.1 Brief description of the Universe 341
10.2 Robertson–Walker metric 344
10.3 Hubble’s law and the cosmological red-shift 355
10.4 Horizons 357
10.5 Luminosity–red-shift relation 360
10.6 Dynamical equations of cosmology 363
10.7 Friedmann models and the cosmological constant 371

xi Contents



10.8 Cosmic background radiation 375
10.9 Brief sketch of the early Universe 377
10.10 The inflationary universe and the Higgs mechanism 383
Further reading 391
Problems 391

11 Gravitation and field theory 392
11.1 Electrodynamics as an abelian gauge theory 394
11.2 Non-abelian gauge theories 400
11.3 Gauging Lorentz symmetry: torsion 409
11.4 Dirac equation in Schwarzschild space-time 416
11.5 Five dimensions: gravity plus electromagnetism 418
Further reading 423
Problems 424

References 425
Index 439

xii Contents



Preface

This book is designed for final year undergraduates or beginning graduate students in
physics or theoretical physics. It assumes an acquaintance with Special Relativity and
electromagnetism, but beyond that my aim has been to provide a pedagogical introduction
to General Relativity, a subject which is now – at last – part of mainstream physics. The
coverage is fairly conventional; after outlining the need for a theory of gravity to replace
Newton’s, there are two chapters devoted to differential geometry, including its modern
formulation in terms of differential forms and coordinate-free vectors, then the Einstein field
equations, the Schwarzschild solution, the Lense–Thirring effect (recently confirmed obser-
vationally), black holes, the Kerr solution, gravitational radiation and cosmology. The book
ends with a chapter on field theory, describing similarities between General Relativity and
gauge theories of particle physics, the Dirac equation in Riemannian space-time, and
Kaluza–Klein theory.

As a research student I was lucky enough to attend the Les Houches summer school in
1963 and there, in the magnificent surroundings of the French alps, began an acquaintance
with many of the then new aspects of this subject, just as it was entering the domain of
physics proper, eight years after Einstein’s death. A notable feature was John Wheeler’s
course on gravitational collapse, before he had coined the phrase ‘black hole’. In part I like
to think of this book as passing on to the community of young physicists, after a gap of more
than 40 years, some of the excitement generated at that school.

I am very grateful to the staff at Cambridge University Press, Tamsin van Essen, Lindsay
Barnes and particularly Simon Capelin for their unfailing help and guidance, and generosity
over my failure to meet deadlines. I also gratefully acknowledge helpful conversations and
correspondence with Robin Tucker, Bahram Mashhoon, Alexander Shannon, the late Jeeva
Anandan, Brian Steadman, Daniel Ryder and especially Andy Hone, who have all helped to
improve my understanding. Finally I particularly want to thank my wife, who has supported
me throughout this long project, with constant good humour and generous and selfless
encouragement. To her the book is dedicated.



Notation, important formulae and physical
constants

Latin indices i, j, k, and so on run over the three spatial coordinates 1, 2, 3 or x, y, z or r, θ, φ
Greek indices α, β, γ,… κ, λ, μ,… and so on run over the four space-time coordinates 0, 1, 2,

3 or ct, x, y, z or ct, r, θ, �
Minkowski space-time: metric tensor is ημν= diag (–1, 1, 1, 1), ds

2 = – c2 dt2 + dx2 + dy2 + dz2

in Cartesian coordinates
Riemannian space-time: ds2 = gμν dx

μ dxν=− c2 dτ2

The Levi-Cività totally antisymmetric symbol (in Minkowski space) is

ε0123 ¼ �ε0123 ¼ 1

Connection coefficients: Gν
μ� ¼ 1=2 gνρðgμρ;� þ g�ρ;μ � gμ�;ρÞ

Riemann tensor: R�
λμν ¼ G�

λν;μ � G�
λμ;ν þ G�

ρμGρ
λν � G�

ρνGρ
λμ

Ricci tensor: Rμν ¼ Rρ
μρν

Curvature scalar: R ¼ gμνRμν

Field equations: Gμν ¼ Rμν � 1=2 gμνR ¼ 8πG
c2

Tμν
Covariant derivatives:

DV μ

dxν
¼ ∂V μ

∂xν
þ Gμ

λνV
λ or V μ

;ν ¼ V μ
;ν þ Gμ

λνV
λ

DWμ

dxν
¼ ∂Wμ

∂xν
� Gλ

μνWλ or Wμ;ν ¼ Wμ;ν � Gλ
μνWλ

Speed of light c= 3.00× 108m s−1

Gravitational constant G = 6.67× 10−11 Nm2 kg−1

Planck’s constant ћ= 1.05× 10−34 J s
= 6.58× 10−22 MeV s

Electron mass me = 9.11× 10−31 kg
mec

2 = 0.51MeV
Proton mass mp = 1.672× 10−27 kg

mpc
2 = 938.3MeV

Neutron mass mn = 1.675× 10−27 kg

mnc
2 = 939.6MeV

Boltzmann constant k= 1.4× 10−23 J K−1

= 8.6× 10−11MeVK−1

Solar mass MS = 1.99× 1030 kg





Solar radius RS = 6.96× 108m

Earth mass ME = 5.98× 1024 kg

Earth equatorial radius RE = 6.38× 106m

Mean Earth–Sun distance R = 1.50× 1011 m= 1 AU

Schwarzschild radius of Sun 2m =
2MSG

c2
= 2:96 km

Stefan–Boltzmann constant σ = 5.67× 10−8Wm−2 K−4

1 light year (ly) = 9.46× 1015m
1 pc = 3.09× 1016 m= 3.26 ly
1 radian = 2.06× 105 seconds of arc

xv Notation, important formulae and physical constants



1 Introduction

Einstein’s General Theory of Relativity, proposed in 1916, is a theory of gravity. It is also, as
its name suggests, a generalisation of Special Relativity, which had been proposed in 1905.
This immediately suggests two questions. Firstly, why was a new theory of gravity needed?
Newton’s theory was, to put it mildly, perfectly good enough. Secondly, why is it that a
generalisation of Special Relativity yields, of all things, a theory of gravity? Why doesn’t it
give a theory of electromagnetism, or the strong or weak nuclear forces? Or something even
more exotic? What is so special about gravity, that generalising a theory of space and time
(because that is what Special Relativity is) gives us an account of it? We begin this chapter
by answering the first question first. By the end of the chapter we shall also have made a little
bit of headway in the direction of answering the second one.

1.1 The need for a theory of gravity

Newton’s theory of gravitation is a spectacularly successful theory. For centuries it has been
used by astronomers to calculate the motions of the planets, with a staggering success rate.
It has, however, the fatal flaw that it is inconsistent with Special Relativity. We begin by
showing this.

As every reader of this book knows, Newton’s law of gravitation states that the force
exerted on a mass m by a mass M is

F ¼ �MmG

r3
r: (1:1)

Here M and m are not necessarily point masses; r is the distance between their centres of
mass. The vector r has a direction from M to m. Now suppose that the mass M depends on
time. The above formula will then become

FðtÞ ¼ �MðtÞmG
r3

r: (1:2)

This means that the force felt by the mass m at a time t depends on the value of the massM
at the same time t. There is no allowance for time delay, as Special Relativity would require.
From our experience of advanced and retarded potentials in electrodynamics, we can say that
Special Relativity would be satisfied if, in the above equation,M(t) weremodified toM(t− r/c).
This would reflect the fact that the force felt by the small mass at time t depended on the value
of the large mass at an earlier time t− r/c; assuming, that is, that the relevant gravitational



‘information’ travelled at the speed of light. But this would then not be Newton’s law. Newton’s
law is Equation (1.2) which allows for no time delay, and therefore implicitly suggests that the
information that the mass M is changing travels with infinite velocity, since the effect of a
changing M is felt at the same instant by the mass m. Since Special Relativity implies that
nothing can travel faster than light, Equations (1.1) and (1.2) are incompatible with it. If two
theories are incompatible, at least one of them must be wrong. The only possible attitude to
adopt is that Special Relativity must be kept intact, so Newton’s law has to be changed.

Faced with such a dramatic situation – not to say crisis – the instinctive, and perfectly
sensible, reaction of most physicists would be to try to ‘tinker’with Newton’s law; to change
it slightly, in order to make it compatible with Special Relativity. And indeed many such
attempts were made, but none were successful.1 Einstein eventually concluded that nothing
less than a complete ‘new look’ at the problem of gravitation had to be taken. We shall return
to this in the next section, but before leaving this one it will be useful to rewrite the above
equations in a slightly different form; it should be clear that, although Newton’s equations
are ‘wrong’, they are an extremely good approximation to whatever ‘correct’ theory is
eventually found, so this theory should then give, as a first approximation, Newton’s law.
We have by no means finished with Newton!

Let us define g=F/m , the gravitational field intensity. This is a parallel equation to E=F/q
in electrostatics; the electric field is the force per unit charge and the gravitational field the
force per unit mass. Mass is the ‘source’ of the gravitational field in the same way that electric
charge is the source of an electric field. Then Equation (1.1) can be written

g ¼ �GM

r2
r̂; (1:3)

which gives an expression for the gravitational field intensity at a distance r from a massM.
This expression, however, is of a rather special form, since the right hand side is a gradient.
We can write

g ¼ �r�; �ðrÞ ¼ �GM

r
: (1:4)

The function �(r) is the gravitational potential, a scalar field. Newton’s theory is then
described simply by one function. (In contrast, as we shall see in due course, the gravita-
tional field in General Relativity is described by ten functions, the ten components of the
metric tensor. The non-relativistic limit of one of these components is, in essence, the
Newtonian potential.) A mass, or a distribution of masses, gives rise to a scalar gravitational
potential that completely determines the gravitational field. The potential � in turn satisfies
field equations. These are Laplace’s and Poisson’s equations, relevant, respectively, to the
cases where there is a vacuum, or a matter density ρ:

ðLaplaceÞ r2� ¼ 0 ðvacuumÞ; (1:5)

ðPoissonÞ r2� ¼ 4πGρ ðmatterÞ: (1:6)

1 For references to these see ‘Further reading’ at the end of the chapter.
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In the case of a point mass, of course, we have ρ (r) =M δ3(r), and by virtue of the identity

r2ð1=rÞ ¼ �4πδ3ðrÞ (1:7)

Equations (1.4) and (1.6) are in accord.
This completes our account of Newtonian gravitational theory. The field g depends on r

but not on t. Such a field is incompatible with Special Relativity. It is not a Lorentz covariant
field; such a field would be a four-vector rather than a three-vector and would depend on t as
well as on r, so that the equations of gravity looked the same in all frames of reference related
by Lorentz transformations. This is not the case here. Since Newton’s theory is inconsistent
with Special Relativity it must be abandoned. This is both a horrifying prospect and a
slightly encouraging one; horrifying because we are having to abandon one of the best
theories in physics, and encouraging because Newton’s theory is so precise and so successful
that any new theory of gravity will immediately have to fulfil the very stringent requirement
that in the non-relativistic limit it should yield Newton’s theory. This will provide an
immediate test for a new theory.

1.2 Gravitation and inertia: the Equivalence Principle
in mechanics

Einstein’s new approach to gravity sprang from the work of Galileo (1564–1642; he was
born in the same year as Shakespeare and died the year Newton was born). Galileo
conducted a series of experiments rolling spheres down ramps. He varied the angle of
inclination of the ramp and timed the spheres with a water clock. Physicists commonly
portray Galileo as dropping masses from the Leaning Tower of Pisa and timing their descent
to the ground. Historians cast doubt on whether this happened, but for our purposes it hardly
matters whether it did or didn’t; what matters is the conclusion Galileo drew. By extrapolat-
ing to the limit in which the ramps down which the spheres rolled became vertical, and
therefore that the spheres fell freely, he concluded that all bodies fall at the same rate in a
gravitational field. This, for Einstein, was a crucially important finding. To investigate it
further consider the following ‘thought-experiment’, which I refer to as ‘Einstein’s box’. A
box is placed in a gravitational field, say on the Earth’s surface (Fig. 1.1(a)). An experi-
menter in the box releases two objects, made of different materials, from the same height,
and measures the times of their fall in the gravitational field g. He finds, as Galileo found,
that they reach the floor of the box at the same time. Now consider the box in free space,
completely out of the reach of any gravitational influences of planets or stars, but subject
to an acceleration a (Fig. 1.1(b)). Suppose an experimenter in this box also releases two
objects at the same time and measures the time which elapses before they reach the floor. He
will find, of course, that they take the same time to reach the floor; hemust find this, because
when the two objects are released, they are then subject to no force, because no acceleration,
and it is the floor of the box that accelerates up to meet them. It clearly reaches them at the
same time. We conclude that this experimenter, by releasing objects and timing their fall,
will not be able to tell whether he is in a gravitational field or being accelerated through
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empty space. The experiments will give identical results. A gravitational field is therefore
equivalent to an accelerating frame of reference – at least, as measured in this experiment.
This, according to Einstein, is the significance of Galileo’s experiments, and it is known as
the Equivalence Principle. Stated in a more general way, the Equivalence Principle says that
no experiment in mechanics can distinguish between a gravitational field and an accel-
erating frame of reference. This formulation, the reader will note, already goes beyond
Galileo’s experiments; the claim is made that all experiments in mechanics will yield the
same results in an accelerating frame and in a gravitational field. Let us now analyse the
consequences of this.

We begin by considering a particle subject to an acceleration a. According to Newton’s
second law of motion, in order to make a particle accelerate it is necessary to apply a force
to it. We write

F ¼ mia: (1:8)

Here mi is the inertial mass of the particle. The above law states that the reason a particle
needs a force to accelerate it is that the particles possesses inertia. Avery closely related idea
is that acceleration is absolute; (constant) velocity, on the other hand, is relative. Now
consider a particle falling in a gravitational field g. It will experience a force (see (1.2) and
(1.3) above) given by

F ¼ mgg: (1:9)

Here mg is the gravitational mass of the particle. It measures the response of a particle to a
gravitational field. It is very important to appreciate that gravitational mass and inertial mass
are conceptually entirely distinct. Acceleration in free space is an entirely different thing
from a gravitational field, and we make this distinction clear by distinguishing gravitational
and inertial mass, as in the two equations above. Now, however, consider a particle falling
freely in a gravitational field, as in the Einstein box experiments. Both equations above
apply. Because the particle is in a gravitational field it will experience a force, given by (1.9);
and because a force is acting on the particle it will accelerate, the acceleration being given by
(1.8). These two equations then give

a ¼ F
mi

¼ mg

mi
g; (1:10)

the acceleration of a particle in a gravitational field g is the ratio of its gravitational and
inertial masses times g. Galileo’s experiments therefore imply that mg/mi is the same for all

Earth

g

(a) (b)

↓ a

↓

Fig. 1.1 The Einstein box: a comparison between a gravitational field and an accelerating frame

of reference.
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materials. Without loss of generality we may putmg =mi for all materials; this is because the
formula for g contains G (see (1.3)), so by scaling G, mg/mi can be made equal to unity. (In
fact, of course, historically G was found by assuming that mg =mi; no distinction was made
between gravitational and inertial masses. We are now ‘undoing’ history.) We conclude that
the Equivalence Principle states that

mg ¼ mi: (1:11)

Gravitational mass is the same as inertial mass for all materials. This is an interesting and
non-trivial result. Some very sensitive experiments have been performed, and continue to be
performed, to test this equality to higher and higher standards of accuracy. After Galileo, the
most interesting experiment was done by Eötvös and will be described below. Before that,
however, it is worth devoting a few minutes’ thought to the significance of the equality
(1.11) above.

The inertial mass of a piece of matter has contributions from two sources; the mass of the
‘constituents’ and the binding energy, expressed in mass units (m=E/c2). This is the case no
matter what the type of binding. So for example the mass of an atom is the sum of the masses
of its constituent protons and neutrons minus the nuclear binding energy (divided by c2). In
the case of nuclei, the binding energy makes a contribution of the order of 10−3 to the total
mass. Atoms are bound together by electromagnetic forces and stars and planets are bound
by gravitational forces. In all of these cases, the binding energy, as well as the inertial mass
of the constituents, contributes to the overall inertial mass of the sample. The statement
(1.11) above then implies that the binding energy of a body will also contribute to its
gravitational mass, so binding energy (in fact, energy in general) has a gravitational effect
since its mass equivalent will in turn give rise to a gravitational field. The gravitational
force itself, by virtue of the binding it gives rise to, also gives rise to further gravitational
effects. In this sense gravity is non-linear. Electromagnetism, on the other hand, is linear;
electromagnetic forces give rise to (binding) energy, which acts as a source of gravity, but
not as a source of further electromagnetic fields, since electromagnetic energy possesses no
charge. Gravitational energy, however, possesses an effective mass and therefore gives rise to
further gravitational fields.

Now let us turn to experiments to test the Equivalence Principle. The simplest one to
imagine is simply the measurement of the displacement from the vertical with which a large
mass hangs, in the gravitational field of the (rotating) Earth. From Problem 1.1 we see that
this displacement is (in Budapest) of the order of 6 minutes of arc multiplied by mg/mi. To
see whethermg/mi is the same for all substances, then, involves looking for tiny variations in
this angle, for masses made of differing materials. This is a very difficult measurement to
make, not least because it is static.

A better test for the constancy of mg/mi relies on the gravitational attraction of the Sun,
whose position relative to the Earth varies with a 24 hour period. We are therefore looking
for a periodic signal, which stands more chance of being observed above the noise than does
a static one. The simplest version of this is the Eötvös or torsion balance; the original torsion
balance was invented by Coulomb and byMitchell, and was used by Cavendish to verify the
inverse square law of gravity. For the purposes of this experiment the torsion balance takes
the form shown in Fig. 1.2.
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Two masses, one of gold (shaded) one of aluminium (not shaded), hang from opposite
ends of an arm suspended by a thread in the gravitational field of the Earth. Consider such a
balance at the North Pole, with the Sun in some assigned position to the right of the diagram.
Then at 6 a.m., say, the situation is as shown in (a), the Earth rotating with angular velocity
ω. The force exerted by the Sun on the gold mass is (M is the mass of the Sun and r the
Earth–Sun distance)

FAu ¼ GMðmgÞAu

r2
(1:12)

and hence its acceleration towards the Sun is

aAu ¼ GM

r2
mg

mi

� �
Au
: (1:13)

A similar formula holds for the aluminium mass. Putting

mg

mi
¼ 1þ δ; (1:14)

a2

a1

ω1 > ω

Earth

a2

a1

ω

ω

ω2 < ω

Earth

(a)

(b)

Sun

Sun

Fig. 1.2 A torsion balance at the North Pole. (a) and (b) represent two situations with a 12 hour time

separation. The Earth is rotating with angular velocity w and a1 and a2 are the accelerations of the gold

and aluminiummasses towards the Sun. Assuming that a1 > a2 the resulting torques are of opposite sign.
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then if δAu≠ δAl a torque is exerted on the balance, of magnitude (2l is the length of the arm)

T ¼ GMl

r2
½ðmgÞAu � ðmgÞAl�: (1:15)

This results in an angular acceleration α given by T= Iα, with I, the moment of inertia, given
by I =mil

2, so we have, at 6 a.m.,

ðαÞ6am ¼ GM

lr2
ðδAu � δAlÞ � GM

lr2
Δ; (1:16)

whereΔ= δAu− δAl . In diagram (a)we suppose thatΔ>0, i.e. the acceleration of the goldmass
is greater than that of the aluminium mass. This in effect causes the torsion balance to rotate
with angular velocity ω1 >ω . At 6 p.m., however, the situation is reversed (Fig. 1.2(b)) so the
direction of the torque will be reversed, and

ðαÞ6pm ¼ �GM

lr2
Δ: (1:17)

Thus there would be a periodic variation in the torque, with a period of 24 hours. No such
variation has been observed,2 allowing the conclusion that

δ510�11; (1:18)

gravitational mass and inertial mass are equal to one part in 1011 – at least as measured using
gold and aluminium.

1.1.1 A remark on inertial mass

The Equivalence Principle states the equality of gravitational and inertial mass, as we have just
seen above. It is worthwhile, however, making the following remark. The inertial mass of a
particle refers to its mass (deduced, for example, from its behaviour analysed according to
Newton’s laws) when it undergoes non-uniform, or non-inertial, motion. There are, however,
two different types of such motion; it may for instance be acceleration in a straight line, or
circular motion with constant speed. In the first case the magnitude of the velocity vector
changes but its direction remains constant, while in the second case the magnitude is constant
but the direction changes. In each of these cases the motion is non-inertial, but there is a
conceptual distinction to be made. To be precise we should observe this distinction and denote
the two types of mass mi,acc and mi,rot. We believe, without, as far as I know, proper evidence,
that they are equal

mi;acc ¼ mi;rot: (1:19)

The interesting thing is that Einstein’s formulation of the Equivalence Principle referred
to inertial mass measured in an accelerating frame, mi,acc, whereas the Eötvös experiment,
described above, establishes the equality (to within the stated bounds) of mi,rot and the

2 Roll et al. (1964), Braginsky & Panov (1972).
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gravitational mass. The question is: can an experiment be devised to test the equality ofmi,acc

and mg? Or even to test (1.19)?

1.1.2 Tidal forces

The Principle of Equivalence is a local principle. To see this, consider the Einstein box in the
gravitational field of the Earth, as in Fig. 1.3. If the box descends over a large distance
towards the centre of the Earth, it is clear that two test bodies in the box will approach one
another, so over this extended journey it is clear that they are in a genuine gravitational field,
and not in an accelerating frame (in which they would stay the same distance apart). In other
words, the Equivalence Principle has broken down. We conclude that this principle is only
valid as a local principle. Over small distances a gravitational field is equivalent to an
acceleration, but over larger distances this equivalence breaks down. The effect is known as
a tidal effect, and ultimately is due to the curvature produced by a real gravitational field.

Another way of stating the situation is to note that an object in free fall is in an inertial frame.
The effect of the gravitational field has been cancelled by the acceleration of the elevator (the
‘acceleration due to gravity’). The accelerations required to annul the gravitational fields of the
two test bodies, however, are slightly different, because they are directed along the radius
vectors. So the inertial frames of the two bodies differ slightly. The frames are ‘locally inertial’.
The Equivalence Principle treats a gravitational field at a single point as equivalent to an
acceleration, but it is clear that no gravitational fields encountered in nature give rise to a
uniform acceleration. Most real gravitational fields are produced by more or less spherical
objects like the Earth, so the equivalence in question is only a local one.

We may find an expression for the tidal forces which result from this non-locality.
Figure 1.4 shows the forces exerted on the two test bodies – call them A and B – in the
gravitational field of a body at O. They both experience a force towards O of magnitude

Test
bodies

Centre of
Earth

Fig. 1.3 Test bodies falling to the centre of the Earth.
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FA ¼ FB ¼ mMG

r2

wherem is the mass of A and B,M is the mass of the Earth and r the distance of A and B from
its centre. In addition, let the distance between A and B be x. Consider the frame in which A
is at rest. This frame is realised by applying a force equal and opposite to FA, to both A and
B, as shown in Fig. 1.4. In this frame, B experiences a force F, directed towards A, which is
the vector sum of FB and −FA:

F ¼ 2FA sin α ¼ 2FA � x
2r

¼ mMG

r3
x:

A then observes B to be accelerating towards him with an acceleration given by F=−m d2x/
dt2, i.e.

d2x
dt2

¼ �MG

r3
x: (1:20)

The 1/r3 behaviour is characteristic of tidal forces.

1.3 The Equivalence Principle and optics

The Equivalence Principle is a principle of indistinguishability; it is impossible, using any
experiment in mechanics, to distinguish between a gravitational field and an accelerating
frame of reference. To this extent it is a symmetry principle. If a symmetry of nature is exact,

O

α α

r

FA

FA FA

F

FB

A B
x

Fig. 1.4 Tidal effect: forces on test bodies A and B.
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this means that various situations are experimentally indistinguishable. If, for example,
parity were an exact symmetry of the world (which it is not, because of beta decay), it would
be impossible to distinguish left from right. The fact that it is possible to distinguish them is a
direct indication of the breaking of the symmetry.

No experiment in mechanics, then, can distinguish a gravitational field from an accel-
erating frame. What about other areas of physics? Let us generalise the Equivalence
Principle to optics, and consider the idea that no experiment in optics could distinguish a
gravitational field from an accelerating frame.3 To make this concrete, return to the Einstein
box and consider the following simple two experiments. The first one is to release mono-
chromatic light (of frequency ν) from the ceiling of the accelerating box, and receive it on the
floor (Fig. 1.5). The light is released from the source S at t= 0 towards the observerO. At the
same instant t= 0 the box begins to accelerate upwards with acceleration a. The box is of
height h. Light from S reaches O after a time interval t = h/c, at which time O is moving
upwards with speed u= at = ah/c.

Now consider the emission of two successive crests of light from S. Let the time interval
between the emission of these crests be dt in the frame of S. Then

dt ¼ 1

ν
in frame S; (1:21)

where ν is the frequency of the light in frame S. Arguing non-relativistically, the time
interval between the reception of these crests at O is

dt0 ¼ dt � Δt ¼ dt � u
dt
c
¼ dt 1� u

c

� �
¼ 1

ν0
;

3 This generalisation is sometimes characterised as a progression from a Weak Equivalence Principle (which is the
statement mi =mg) to a Strong Equivalence Principle, according to which all the laws of nature (not just those of
freely falling bodies) are affected in the same way by a gravitational field and a constant acceleration.

O

S

h a↑

Fig. 1.5 Light propagating downwards in a box accelerating upwards.
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hence

ν0

ν
¼ 1

1� u=c
¼ 1þ u

c
þO

u

c

� �2
41; (1:22)

the light is Doppler (blue) shifted. With ν 0 = ν+Δν we have

Δν
ν

¼ u

c
þO

u

c

� �2
¼ ah

c2
þO

ah

c2

� �2
: (1:23)

Arguing relativistically, the above result is unchanged to order (ah/c2)2; the equation above
becomes (with γ= (1− u2/c2)−½)

dt0 ¼ γðdt � ΔtÞ ¼ γ dtð1� u=cÞ ¼ 1

ν0
;

hence

ν0

ν
¼ 1

γ 1� u
c

� � ¼
ffiffiffiffiffiffiffiffiffiffi
1þ u

c

1� u
c

s
¼ 1þ u

c
þO

u

c

� �2
;

which is the same as (1.22), to the given order. The Equivalence Principle then implies that
this is the relativistic frequency shift of light in a gravitational field. That is to say, if light is
emitted at a point S in a gravitational field and observed at a point O closer to the source of
the field, the measured frequency of the light atO is greater than that at S; light ‘falling into’
a gravitational field is blue-shifted. By the same token, if light moves ‘out of’ a gravitational
field its frequency is decreased – it is red-shifted. To get an order of magnitude estimate for
this effect, it follows directly from (1.23) that for light travelling 10 metres vertically
downwards in the Earth’s gravitational field, h = 10m, a= 10m s−2, we have

Δν
ν

� 10�15: (1:24)

Of course in the gravitational case the frequency shift described above is not a Doppler
shift. It is a purely gravitational effect, in which the source and the detector are not in relative
motion. The formula was, however, derived from the hypothesis that the physical conse-
quences of observing light frequency in a gravitational field are the same as those of
observing it in an accelerating frame; and this is a Doppler shift, because in this case
the source and detection point are in relative motion. This concludes the first thought-
experiment on the Equivalence Principle and optics.

The second such thought-experiment is also concerned with light propagation; this time the
light travels from left to right across the Einstein box. Consider the situations drawn schemati-
cally in Fig. 1.6. In (a) a beam of laser light travels in an inertial frame (that is, in neither a
gravitational field nor an accelerating frame) across the box. It leaves the laser on the left hand
wall and is detected on the right hand wall, after travelling in a straight line. In (b) the box is
accelerating upwards with an acceleration a; this acceleration commences at the same time
that the light leaves the laser. After a time Δt the light has travelled in the x direction a distance
Δx= cΔt, while the box has moved upwards a distance Δy=½a(Δt)2, from which
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Δy ¼ a

2c2
ðΔxÞ2: (1:25)

Since Δy and Δx are the coordinates of the light as measured in the box, it follows that the
light describes a parabolic path if the box is accelerated. It will therefore be detected at a
detector nearer the floor of the box than the laser is. The Equivalence Principle then implies
that light follows a curved path in a gravitational field, since it does so in an accelerating
frame.

This conclusion is extremely far-reaching; even more so than the prediction of a
gravitational frequency shift. Fermat (1601–1665) postulated that light takes a minimum
time to travel from one point to another. For example, consider (Fig. 1.7) the passage of
light from A to B, after reflection in a mirror. Let an arbitrary path be ACB, where C is the
point where the light beam strikes the mirror, and let the angles of incidence and reflection
be θi and θr , as marked. For simplicity, let A and B each be a perpendicular distance h from
the mirror (AM=BN=h) and let x and y be the horizontal distances MC and CN
respectively. Then, since A and B are fixed points, x + y= d (fixed). The distance s travelled
by the light is

s ¼ AC þ CB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ h2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ h2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ h2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � xð Þ2þh2

q
:

The time taken to travel a distance s is then s/c, with c the speed of light; more generally,
the time taken to travel over a given path is ∫ds/c. The requirement that the time taken be a

(a) (b)

a↑

Fig. 1.6 Light travelling across a box (a) in an inertial frame, (b) in an accelerating frame, or equivalently

a gravitational field.

h

A

h

B

M P C N

θi

θr

x y

Fig. 1.7 Fermat’s Principle: light reaches A from B after reflection at a mirror surface.
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minimum is, since c is constant, clearly the same as the requirement that the distance
travelled be a minimum. In the example of reflection of light at the mirror above, if s is a
minimum then ds/dx= 0, which is easily seen to give

ds=dx ¼ 0 ) x ¼ y ¼ d

2
;

in other words, the light beam strikes the mirror at P, at which θi = θr . Fermat’s requirement
of least time yields Snell’s law, that the angles of incidence and reflection are equal.

Fermat’s principle is, however, much more far-reaching than this. To begin with, in a
general sense, the demand that light propagation takes a minimum time is the requirement
that ∫ds be a minimum; or that, in the sense of the variational principle,4

δ
Z

ds ¼ 0: (1:26)

The bending of light in a gravitational field then implies, if we take Fermat’s principle
seriously, that the shortest path between two points in a gravitational field is not a straight
line. In any flat (Euclidean) space, however, the shortest path between two points is a
straight line. We therefore conclude that the effect of the gravitational field is to make space
curved. This is Einstein’s conclusion: to study gravity we have to study curved spaces. The
motion of particles in a gravitational field is to be formulated as the motion of particles in
curved spaces. And more generally we can then learn to formulate any laws of physics in a
gravitational field; for example, the study of electrodynamical effects in a gravitational field
is ‘simply’ arrived at by writing Maxwell’s equations in a curved space. The study of curved
spaces is, however, not easy, and this is precisely why General Relativity is so difficult. On
the other hand, in a qualitative sense some results become immediately ‘comprehensible’ in
this new language. For example, the reason that planetary orbits are curves (ellipses, in
general) is that planets travel in free-fallmotion, so they trace out the shortest path they can.
In a flat space this would be a straight line, but the effect of the Sun’s gravity is to make the
space surrounding it curved, making the planetary orbits curved paths (there are no straight
lines in a curved space.). Newton’s account of gravity, involving a force, becomes replaced
by an entirely different account, involving a curved space. This is an absolutely totally
different vision! It is, however, worth remarking again that the effects of a curved space are
not going to be easy to detect on Earth; the deflection of a light beam on Earth, travelling
over a distance of 100 km (an order of magnitude larger than, for example, SLAC, the
particle accelerator at Stanford), is, from (1.25), with a= g= 10m s−2, about 10−3mm.

The reader who has followed the logic so far will agree that the plan of action is now, in
principle, clear. We have to learn about curved spaces; and this includes learning how to
describe vectors in curved spaces, and how to differentiate them, which we must do if we are
to carry over ideas such as Gauss’s theorem and Stokes’ theorem into curved spaces. The
task is large, not to say daunting, but thanks to the efforts of differential geometers and
theoretical relativists over a long period of time (from before Einstein’s birth to after his

4 The variational principle continues to play a crucial role in the formulation of fundamental theories in physics,
from classical mechanics and quantum mechanics to General Relativity and gauge field theory. For an introduc-
tion to the central role of the variational principle see Yourgrau & Mandelstam (1968).
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death) it is not impossible; and, like the task of climbing a mountain, great efforts are
rewarded with excellent views. The chapters ahead chart, I hope, a sensible way through this
rather complex material, but we close this chapter by making some simple observations and
calculations about curved surfaces.

1.4 Curved surfaces

A surface is a 2-dimensional space. It has the distinct advantage that we can imagine it easily,
because we see it (as the mathematicians say) ‘embedded’ in a 3-dimensional space –which
also happens to be flat (I mean, of course, Euclidean 3-space). What I want to demonstrate,
however, is that there are measurements intrinsic to a surface that may be performed to see
whether it is flat or not. It is not necessary to embed a surface in a 3-dimensional space in
order to see whether or not the surface is curved; we can tell just by performing measure-
ments on the surface itself. The reader will appreciate that this is a necessary exercise; for if
we are to make the statement that 3-dimensional space is curved, this statement must have an
intrinsicmeaning. There is no fourth dimension into which our 3-dimensional space may be
embedded (time does not count here).

To begin, consider the three surfaces illustrated in Fig. 1.8. They are a plane, a sphere and
a saddle. On each surface draw a circle of radius a and measure its circumference C and area
A. On the plane, of course, C= 2πa and A= πa2, but our claim is that these relations do not
hold on the curved surfaces. In fact we have

Plane: C ¼ 2πa A ¼ πa2 flat zero curvatureð Þ;
Sphere: C52πa A5πa2 curved positive curvatureð Þ;
Saddle: C42πa A4πa2 curved negative curvatureð Þ:

(1:27)

C = 2πa C < 2πa C > 2πa

Zero curvature Positive curvature Negative curvature

Fig. 1.8 Circles inscribed on a plane, on a sphere and on a saddle.
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In the case of the sphere, for example, to see that C < 2πa imagine cutting out the circular
shape which acts as a ‘cap’ to the sphere. This shape cannot be pressed flat. In order to make
it flat some radial incisions must be inserted, but this then has the consequence that the total
circumference C of the dotted circle, which is equal to the sum of the arcs of all the incisions
in the diagram below, is less than 2πa. In the case of the saddle the opposite thing happens;
in order to get the circular area to lie flat, we have to fold parts of it back on itself, so that the
true circumference C is greater than 2πa.

It is important to bear in mind in the above reasoning that a, the radius of the circle, is
the actual distance from the centre to the perimeter, as measured in the space. For
simplicity imagine drawing a circle of radius 1000 km on the surface of the Earth, with
the centre of the circle at the North Pole. This could be done by having a piece of wire
1000 km long, fixing one end at the North Pole and walking round in a circle, with the wire
kept taught. The distance travelled before returning to one’s starting point is the circum-
ference C of the circle. The radius of this circle, 1000 km, is the length of the wire, which is
laid out along the curved surface. One might feel tempted to point out that one could define
the radius of the circle as the ‘straight’ distance between a point on the circumference and
the North Pole, measured by tunnelling through the Earth. But this would be cheating,
because it would involve leaving the space. We are to imagine the surface as being a world
in itself, which we do not leave; we are insisting, in other words, on making measurements
intrinsic to the space. It should now be clear that the statements (1.27) above constitute
a way of telling whether a space – in this case a 2-dimensional one – is flat or curved (and
if curved, whether open or closed), and this by means of measurements made entirely
within the space. A corollary of this is that, on this definition, a cylinder is flat; for a cylinder
can be made by joining together the edges of a flat piece of paper, without stretching or
tearing (see Fig. 1.9, where the edges with arrows are joined together). Since C = 2πa
before joining the edges, the same relation holds after joining them, so a cylinder is not
intrinsically curved. It is said that a cylinder has zero intrinsic curvature but non-zero
extrinsic curvature.

It is interesting to make one final observation about the exercise of drawing circles on
spheres. As the circle S1 is lowered over the sphere, becoming further and further south, its

Fig. 1.9 A cylinder is made by joining the edges of a plane (those marked with arrows). No cutting or

stretching is involved.
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circumference increases as its radius increases (withC< 2πa always holding).5 This happens
until the circle becomes the Equator. This is the circle with a maximum circumference in S2;
beyond the Equator, when the circle enters the southern hemisphere, its radius continues to
increase, but its circumference actually decreases. This continues to be the case until the
circle itself approaches the South Pole, at which its circumference tends to zero. This is
the limit of a circle with maximum radius (which is the maximum distance attainable in
the space) but with a circumference approaching zero. These observations are, in a sense,
obvious, but they become interesting and physically relevant in a particular cosmological
model, in which the geometry of 3-dimensional space is S3, the 3-sphere. The above
exercise can then be rehashed, increasing the dimension of everything by 1; that is, to
discuss surfaces S2 in S3, rather than lines S1 in S2. This model describes a ‘closed’ universe,
and is described further in Section 10.2 below.

Further reading

Accounts of the various attempts to construct relativistic theories of gravity (other than
General Relativity) are outlined in Pauli (1958) pp. 142–5, Mehra (1973), Pais (1982)
Chapter 13, Torretti (1996) Chapter 5 and Cao (1997) Chapter 3.

For details of the Eötvös experiment on the torsion balance, see Dicke (1964) and Nieto
et al. (1989). A modern assessment of the experimental evidence for the Equivalence
Principle is contained in Will (2001). The reference to Einstein’s seminal paper on the
Equivalence Principle and optics is Einstein (1911).

Good introductory accounts of General Relativity and curved spaces are to be found
in Hoffmann (1983) Chapter 6, and in Harrison (2000) Chapters 10 and 12. See also, for a
slightly more advanced treatment, Ellis & Williams (1988).

Problems

1.1 Find an expression for the angle of displacement from the vertical with which a mass
hangs in the gravitational field of the Earth as a function of latitude λ, and calculate its
value at Budapest (latitude 47.5° N).

1.2 Suppose that mass, like electric charge, can take on both positive and negative values,
but with Newton’s laws continuing to hold. Consider two masses,m1 andm2, a distance
r apart. Describe their motion in the cases (i) m1 =m2 =m (m > 0), (ii) m1 =m2 =−m,
(iii) m1 =m, m2 =−m. Is momentum conserved in all these cases?

5 Sn is an n-dimensional subspace of the (n+ 1)-dimensional Euclidean space, given by the formula x1
2 + x2

2 + � � �
+ xn+ 1

2 = const. So S1 is a circle, S2 (the surface of) a sphere, etc.
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1.3 The usual formula for the period T of a simple pendulum of length l is

T ¼ 2π

ffiffiffi
l

g

s
;

where g is the acceleration due to gravity. Denoting the inertial mass of the pendulum
bob by mi and its gravitational mass by mg, derive an alternative expression for T in
terms of these masses, the radius R of the Earth and its mass Mg.

1.4 By employing spherical polar coordinates show that the circumference C of a circle of
radius R inscribed on a sphere S2 (as in Fig. 1.8) obeys the inequality C < 2πR.
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2 Special Relativity, non-inertial effects
and electromagnetism

General Relativity is a generalisation of Special Relativity, and this chapter begins with a
brief summary of the special theory, with which the reader is assumed already to have some
familiarity. After an account of the famous ‘Einstein train’ thought experiment, the more
formal matters of Minkowski space-time and Lorentz transformations are discussed. We
then consider some non-inertial effects in the shape of the twin paradox and the Sagnac
effect. Mach’s Principle, which concerns itself with the origin of inertia, is considered, and
this is followed by a section on Thomas precession; an effect derivable from Special
Relativity alone, but associated with forces, and therefore with non-inertial frames. The
chapter finishes with a brief treatment of electrodynamics – which was Einstein’s starting
point for Special Relativity.

2.1 Special Relativity: Einstein’s train

We are concerned with the laws of transformation of coordinates between frames of
reference in (uniform) relative motion. Two frames, S and S 0, both inertial, move relative
to one another with (constant) speed v, which we may take to be along their common x axis.
The space-time coordinates in each frame are then

S : ðx; y; z; tÞ; S0 : ðx0; y0; z0; t0Þ:
What is the relation between these? In the physics of Galileo and Newton it is

x0 ¼ x� vt; y0 ¼ y; z0 ¼ z; t0 ¼ t (2:1)

whose inverse is

x ¼ x0 þ vt0; y ¼ y0; z ¼ z0; t ¼ t0; (2:2)

S and S 0 have a common origin at t = 0. There is an infinite number of inertial frames and the
laws of Newtonian mechanics are the same in all of them. There is no such thing as absolute
velocity; we can only meaningfully talk about the relative velocity of one inertial frame
relative to another one. This is the Newtonian–Galilean Principle of Relativity. Under the
above transformations the laws of Newtonian mechanics are covariant (of the same form).
These transformations form a group – the Galileo group – which is the symmetry group of
Newtonian mechanics. Its actions take one from one frame of reference S to another one S 0,
in which the laws of mechanics are the same. If there is a frame S00, moving relative to S 0 with
speed u along their common x axis, then the speed of S00 relative to S is



w ¼ uþ v: (2:3)

This is the law of addition of velocities in the Newtonian-Galilean Principle of Relativity.
Can this Principle of Relativity be generalised frommechanics to all of physics? This is surely

a worthy aim, but a strong hint of trouble came when Maxwell, in his theory of electro-
magnetism, showed that the speed of light (electromagnetic waves) was given by the formula

c ¼ ðε0μ0Þ�
1=2; (2:4)

where ε0 is the electric permitivity and μ0 the magnetic permeability of free space. When
the values are inserted this gives c≈ 3× 108m s−1 – the observed speed of light. So in
Maxwell’s electrodynamics the speed of light (in a vacuum) depends only on electric and
magnetic properties of the vacuum, and is therefore absolute; this clearly contradicts the
Principle of Relativity above. It must be the same in all frames of reference and Equation (2.3)
must therefore break down (at least when applied to light).

The most famous demonstration of this is the Michelson–Morley experiment, which
showed that the speed of light is indeed the same in different frames of reference. It is
therefore clear that Equations (2.1) and (2.2) must be revised. It was in fact already known
that the transformations which left Maxwell’s equations invariant were the Lorentz trans-
formations, which for relative motion along the x axis take the form

x0 ¼ γðx� vtÞ; y0 ¼ y; z0 ¼ z; t0 ¼ γðt � vx=c2Þ (2:5)

with inverse

x ¼ γðx0 þ vt0Þ; y ¼ y0; z ¼ z0; t ¼ γðt0 þ vx0=c2Þ; (2:6)

where

γ ¼ ð1� v2=c2Þ�1=2: (2:7)

Einstein interpreted these equations not just as a mathematical curiosity, but as a demon-
stration that time, like space, is relative: x 0 ≠ x, t 0 ≠ t. Let us illustrate this by considering the
‘Einstein train’.

Trains A and B, with the same length L, pass one another with relative speed v in the x
direction. How long does this take? Let us consider two events:

Event 1 : front of train B passes front of train A

Event 2 : rear of train B passes front of train A

These are illustrated in Fig. 2.1.
Let us adopt the coordinates

ðx0; t0Þ : coordinates inmoving frame

ðx; tÞ : coordinates in stationary frame
(2:8)

What is the time interval between these events, as measured in the two coordinate systems?
To be definite, let us consider train A as stationary and train B moving. We take the origins
(x = 0, x0 = 0) at the right hand ends of the trains and synchronise the clocks so that event 1
happens at t= 0, t 0 = 0. Then, for event 1
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ðx10; t10Þ ¼ ð0; 0Þ; ðx1; t1Þ ¼ ð0; 0Þ: (2:9)

If event 2 happens after a time interval T in the stationary frame (train A) and after an interval
T 0 in the moving frame (train B) then we have

ðx20; t20Þ ¼ ð�L; T 0Þ; ðx2; tÞ ¼ ð0; TÞ: (2:10)

The Lorentz transformation (2.5) applied to event 2 gives − L= γ (−v T), T 0 = γ T, or

L ¼ γ v T ; T 0 ¼ γT : (2:11)

Since γ>1, then T 0 >T ; the time interval between events 1 and 2 in the moving frame is
greater than in the stationary frame – ‘time goes slower inmoving frames’. So whenAndrei (in
train A) looks at Bianca’s clock (in train B), he sees it goes slower than his own. It is also true
that when Bianca looks at Andrei’s clock, she sees it goes slower than her own (since of course
the whole sequence of events can be considered in the frame in which B is at rest). One is
tempted to ask the question, whose clock is really going slower? But this is a bit like asking,
when walking along a road, is the house on the left or the right hand side of the road? It all
depends in which direction you are walking; and in our case it all depends who is looking at
the two clocks: if Andrei is looking, Bianca’s clock is going slower, and if Bianca is looking,
Andrei’s clock is lagging. This is, after all, a theory of relativity – only relative motion has
physical significance. It has nomeaning to say that A is at rest and B is moving, anymore than
it has to say that B is at rest and A is moving. Since only relative motion has significance,
anything observed by A must also be observed by B; the situation is symmetrical. Einstein’s
train gives a neat demonstration of the relativity of time – to be precise, of time intervals.

There is, as the reader will know, a similar result for space intervals: what is the length of
train B as viewed from train A? Call it L0. It is of course Tv:

L0 ¼ T v ¼ L=γ ¼ L ð1� v2=c2Þ1=25L: (2:12)

Ameasures B’s train as being shorter than his own. Similarly, B measures A’s train as being
shorter than her own: moving objects appear contracted. This is the Fitzgerald–Lorentz
contraction.

Event 1

Event 2

v

v

Fig. 2.1 Event 1: front of train B passes front of train A; Event 2: rear of train B passes front of train A.
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We see that time intervals and lengths are not invariant under Lorentz transformations.
Infinitesimally, dx2 + dy2 + dz2 is not invariant, and neither is dt2. The quantity which is
invariant between the events (x, y, z, t) and (x + dx, y+ dy, z+ dz, t+ dt) is

ds2 ¼ �c2 dt2 þ dx2 þ dy2 þ dz2: (2:13)

In the present case of the train, dy = dz= 0, so ds2 =− c2 dt2 + dx2. This should be the same in
all frames of reference, where dt and dx refer to the time and space separation of the two
events above. We then have, in the rest frame S with coordinates (x, t)

ds2 ¼ �c2 dt2 þ dx2 ¼ �c2ðt2 � t1Þ2 þ ðx2 � x1Þ2 ¼ �c2T 2; (2:14)

while in the moving frame S 0, with coordinates (x 0, t 0)

ds2 ¼ �c2 dt0 2 þ dx0 2 ¼ c2ðt20 � t1
0Þ2 þ ðx20 � x1

0Þ2
¼ �c2T 0 2 þ L2

¼ �c2γ2T 2 þ γ2v2T2 ¼ �c2γ2T2ð1� v2=c2Þ
¼ �c2T2; (2:15)

where (2.11) and (2.12) have been used. We see that ds2 is the same in the two frames. We
also see the force of Minkowski’s remark,1 ‘Henceforth space by itself, and time by itself,
are doomed to fade away into mere shadows, and only a kind of union of the two will
preserve an independent reality.’

2.1.1 Minkowski space-time

We now formalise Special Relativity as follows. Space and time become a 4-dimensional
manifold, Minkowski space-time. Points in this space-time (‘events’) have coordinates x μ

(μ = 0, 1, 2, 3), with, in Cartesian coordinates (x0, x1, x2, x3) = (ct, x, y, z), and in spherical
polars (x0, x1, x2, x3) = (ct, r, θ, �). We also adopt the notation that while Greek suffices take
on the values (0, 1, 2, 3), Latin suffices take on the values (1, 2, 3) for space variables only;
x μ= (x0, xi). The invariant distance, or ‘separation’ between two events (in Cartesian
coordinates), ds2 =− c2 dt2 + dx2 + dy2 + dz2, is written in the form

ds2 ¼ ημv dx
μ dxv; (2:16)

where the summation convention has been used: repeated indices are summed over the
values 0, 1, 2, 3. Thus (2.16) is short-hand for

ds2 ¼ η00ðdx0Þ2 þ η01 dx
0 dx1 þ η02 dx

0 dx2 þ � � � ð16 termsÞ;
and ημν has the following values, in Cartesian coordinates:

ds2 ¼ �c2 dt2 þ dx2 þ dy2 þ dz2; (2:17)

1 In Lorentz et al., 1952, p. 75.
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hence

η00 ¼ �1; η11 ¼ η22 ¼ η33 ¼ 1; ημν ¼ 0; μ 6¼ ν;

or in matrix form

ημv ¼
�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA; (2:18)

and in spherical polar coordinates:

ds2 ¼ �c2 dt2 þ dr2 þ r2 dθ2 þ r2 sin2θ d�2 (2:19)

hence

η00 ¼ �1; η11 ¼ 1; η22 ¼ r2; η33 ¼ r2 sin2θ; ημν ¼ 0; μ 6¼ ν;

ημv ¼

�1 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 r2 sin2θ

0
BBB@

1
CCCA:

(2:20)

The object ημν is the metric tensor of Minkowski space; it makes the space a metric space,
one in which distance is defined.

A useful concept in Special Relativity is that of proper time τ. It is defined by

ds2 ¼ �c2 dτ2: (2:21)

In a particle’s own rest frame – inwhich, of course, dx=dy=dz=0, τ coincides with t, so proper
time is simply time as measured in the rest frame, or time recorded on one’s own clock.

2.1.2 Lorentz transformations

Lorentz transformations are transformations between coordinates labelling space-time
events recorded by two inertial observers in uniform relative motion. They take a system
from one inertial frame to another one, and consist of rotations and Lorentz ‘boost’ trans-
formations.2 Under a general Lorentz transformation

2 The maximal set of transformations leaving ds2 invariant includes, in addition to rotations and boosts, also
translations in space and time, xi → xi + ai, t → t + t0 (or simply x μ → x μ+a μ). These are inhomogeneous
transformations and, corresponding to the philosophy outlined above, their inclusion represents the fact that the
laws of physics are invariant under space and time translations; there is no absolute origin in space, nor in time
(the Big Bang is not relevant here; firstly, we are not considering cosmology, and secondly, we are concernedwith
the laws of physics themselves, not with whatever state the Universe happens to be in). Enlarging the group of
Lorentz transformations to include these translations produces the inhomogeneous Lorentz group, or Poincaré
group. The importance of the Poincaré group as the maximal invariance group in Minkowski space was
emphasised particularly by Wigner, whose analysis remains of fundamental importance in particle physics. For
more details, see Wigner (1939, 1964), Wightman (1960), Sexl & Urbantke (1976), Tung (1985), Doughty
(1990), Ryder (1996), Cao (1997).
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x μ ! x0μ ¼ Λ μ
vx

v (2:22)

so dx 0 μ =Λ μ
ν dx

ν and the invariance of ds2 gives

ημv dx
0μ dx0v ¼ ημv dx

μdxv;

hence

ημvΛ
μ
ρΛ

v
σ dxρ dxσ ¼ ηρσ dx

ρ dxσ

or

ημvΛ
μ
ρΛ

v
σ ¼ ηρσ : (2:23)

Let us now check that this holds for some specific Lorentz transformations. First consider a
rotation about the z axis through an angle θ:

x0 ¼ x cos θ þ y sin θ; y0 ¼ �x sin θ þ y cos θ:

The corresponding matrix is

Λ μ
v ¼

1 0 0 0
0 cos θ sin θ 0
0 � sin θ cos θ 0
0 0 0 1

0
BB@

1
CCA: (2:24)

Equation (2.23) with ρ= σ = 1 then gives ημν Λ
μ
1Λ

ν
1 = 1, i.e. (summation convention!)

� Λ0
1Λ

0
1 þ Λ1

1Λ
1
1 þ Λ2

1Λ
2
1 þ Λ3

1Λ
3
1 ¼ 1;

or cos2θ+ sin2θ = 1, which is correct. Taking different values for ρ and σ also gives
consistency with (2.23), as may easily be checked.

Now consider a Lorentz boost along the x direction. With x0 = ct (and replacing − v by
+ v), Equation (2.5) corresponds to the Lorentz matrix

Λ μ
v ¼

γ γv=c 0 0
γv=c γ 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA: (2:25)

Now put, for example, ρ= σ = 0. With Λ0
0 = γ, Λ

1
0 = γv/c, Λ

2
0 =Λ

3
0 = 0, we have

η00ðΛ0
0Þ2 þ η11ðΛ1

0Þ2 ¼ �1;
or γ2(1− v2/c2) = 1, which is correct.

For future reference it is convenient to give the most general form of a Lorentz (boost)
transformation, from frame S to frame S 0 moving with relative velocity v:

x0 ¼ xþ ðγ� 1Þ x
: v
v2

v� γvt; t0 ¼ γ t � x : v
c2

� �
; (2:26)

with inverse
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x ¼ x0 þ ðγ� 1Þ x
0 : v
v2

vþ γvt0; t ¼ γ t0 � x0 : v
c2

� �
; (2:27)

and, as usual, γ= (1− v2/c2)−½.
The matrix (2.25) may be written in a ‘trigonometric’ form, similar to (2.24). Defining the

hyperbolic angle � by (β=v/c)

γ ¼ cosh�; γβ ¼ sinh�; (2:28)

the Lorentz transformation given by (2.25) may be written

x00

x01

x02

x03

0
BB@

1
CCA ¼

cosh� sinh� 0 0
sinh� cosh� 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA

x0

x1

x2

x3

0
BB@

1
CCA: (2:29)

We now define the generator of Lorentz boosts along the x axis by

Kx ¼ 1

i
∂Λ
∂�

����
�¼0

¼ �i

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA; (2:30)

where Λ is the matrix in (2.29). It may then easily be checked that

expðiKx�Þ ¼
cosh� sinh� 0 0
sinh� cosh� 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA: (2:31)

The generators of boosts along the y and z axes are defined analogously and turn out as

Ky ¼ �i

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

0
BB@

1
CCA; Kz ¼ �i

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

0
BB@

1
CCA: (2:32)

Generators of rotations may be defined similarly. The matrix (2.24) represents a rotation

about the z axis, whose generator is defined as Jz ¼ 1

i
∂Λ
∂θ

����
θ¼0

. This and analogous defini-

tions for Jx and Jy yield

Jx¼�i

0 0 0 0
0 0 0 0
0 0 0 1
0 0 �1 0

0
BB@

1
CCA; Jy¼�i

0 0 0 0
0 0 0 �1
0 0 1 0
0 0 0 0

0
BB@

1
CCA; Jz¼�i

0 0 0 0
0 0 1 0
0 �1 0 0
0 0 0 0

0
BB@

1
CCA:

(2:33)

These six generators obey the commutation relations ([A,B]≡AB−BA)
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½Jx; Jy� ¼ i Jz and cyclic perms

½Kx;Ky� ¼ �i Jz and cyclic perms

½Jx;Ky� ¼ iKz and cyclic perms

½Jx;Kx� ¼ 0 etc:

(2:34)

Equivalently, relabelling the subscripts x, y, z as 1, 2, 3,

½Ji; Jk � ¼ i εikmJm; (2:35a)

½Ji;Kk � ¼ i εikmKm; (2:35b)

½Ki;Kk � ¼ i εikmJm; (2:35c)

where εikm is the totally antisymmetric symbol

εikm ¼
1 ðikmÞ even permutation of (123),
�1 ðikmÞ odd permutation of (123),
0 otherwise:

(
(2:36)

In terms of these six generators a general Lorentz boost transformation is

ΛðfÞ ¼ expðiK : fÞ; (2:37)

a general rotation is represented by

ΛðqÞ ¼ expðiJ : qÞ; (2:38)

while a general Lorentz transformation, comprising both a boost and a rotation is given by

Λðf; qÞ ¼ expðiK : fþ iJ : qÞ: (2:39)

The relations (2.35) define the Lie algebra of the Lorentz group, involving three generators
Ki of Lorentz ‘boosts’ (or ‘pure’ Lorentz transformations) and three generators Ji of rotations
in space. The algebra is closed, corresponding to the fact that Lorentz transformations form a
group. Rotations in space form a subgroup of the Lorentz group, as may be seen from the
fact that the generators Ji form by themselves a closed algebra. The boost generators Ki

however do not generate a closed system, as is seen from (2.35c); pure Lorentz trans-
formations do not form a group. As a simple consequence of this, the product of two Lorentz
boosts in different directions is not a single Lorentz boost, but also involves a rotation. It is
this fact which is responsible for Thomas precession (see Section 2.5 below) – and which, as
far as I can tell, seems to have been unknown to Einstein.

We finish this section with an additional remark about notation. In Equation (2.16),

ds2 ¼ ημv dx
μ dxv;

it was pointed out that the summation convention is understood. To be more precise, indices
to be summed over appear twice, once in a lower and once in an upper position. We may
write (2.16), however, in an alternative way. Defining

xμ ¼ ημ vx
v;
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we may put

ds2 ¼ dx μ dxμ; (2:40)

where still the summation convention holds, and the repeated index – only one index now –

appears once in a lower and once in an upper position. Note that the components xμ and x μ

are quite different: in Cartesian coordinates we have

ðx0; x1; x2; x3Þ ¼ ðct; x; y; zÞ; ðx0; x1; x2; x3Þ ¼ ð�ct; x; y; zÞ;
and in spherical polar coordinates

ðx0; x1; x2; x3Þ ¼ ðct; r; θ; �Þ; ðx0; x1; x2; x3Þ ¼ ð�ct; r; r2; θ; fr2 sin2θg�Þ:
In General Relativity the position of indices on vectors is important. Vectors with an upper
index, V μ, are called contravariant vectors, and those with a lower index, Vμ, covariant
vectors. In the modern mathematical formulation, these vectors actually arise in concep-
tually different ways, as will be explained in the next chapter.

2.2 Twin paradox: accelerations

The so-called twin paradox is not a paradox. It is the following statement: if A and B are
twins and A remains on Earth while B goes on a long trip, say to a distant star and back
again, then on return B is younger than A. Suppose the star is a distance l away and B travels
with speed v there and back. Then, as measured in A’s frame, B is away for a time 2l/v, and
that is howmuch A has aged when B returns. When A looks at B’s clock, however, there is a
time dilation factor of γ= (1− v2/c2)−½, so B’s clock – including her biological clock – has
only registered a passage of time 2l/γv = (2l/v)(1− v2/c2)½; on return, therefore, she is
younger than A. This is the true situation. It appears paradoxical because one is tempted
to think that ‘time is relative’, so that while A reckons B to be younger on return, as argued
above, B should also reckon A to be younger; so in actual fact, one might think, they are the
same age after the trip, just as before it. This, however, is wrong, and the reason is that while
A remains in an inertial frame (or at least the approximately inertial frame of the Earth), B
does not, since B has to reverse her velocity for the return trip, and that means she undergoes
an acceleration. There is no reason why the twins should be the same age after B’s space
trip, and they are not.

It may be useful to consider some numbers. Suppose the star is 15 light years away and B
(Bianca) travels at speed v= (3/5)c. Then, measured by A (Andrei), Bianca reaches the star in
15

3=5
¼ 25 years, so Andrei is 50 years older when Bianca returns (see Fig. 2.2). The time

dilation factor is 1/γ= (1− v2/c2)½=4/5, so, as seen by Andrei, Bianca takes a time
25× (4/5) =20 years to reach the star, and will therefore be 40 years older when she returns.
She will therefore be 10 years younger than Andrei after the trip. Of course, this is an
approximation, since we have ignored the time taken for Bianca to change her velocity from

26 Special Relativity, non-inertial effects and electromagnetism



+v to −v; this is indicated by B’s ‘smoothed out’ world-line near the star in Fig. 2.2. We now
show, however, that this time may be as short as desired, if B is subjected to a large enough
acceleration.Wemust therefore consider the treatment of accelerations inMinkowski space-time.

First define the 4-velocity u μ:

u μ ¼ dx μ

dτ
¼ c

dt
dτ

;
dx
dτ

;
dy
dτ

;
dz
dτ

� �
: (2:41)

In view of (2.16) and (2.17) we have

ημvu
μuv ¼ u μuμ ¼ �c2; (2:42)

the 4-velocity has constant length. Differentiating this gives with _u μ ¼ du μ

dτ

� �
d
dτ

ðu μuμÞ ¼ 0 ¼ 2 _u μuμ;

or, defining the acceleration four-vector a μ ¼ _u μ,

ημva
μuv ¼ a μuμ ¼ 0: (2:43)

Now consider a particle moving in the x1 direction with constant acceleration g. The velocity
and acceleration 4-vectors are

c
dt
dτ

¼ u0;
dx1

dτ
¼ u1;

du0

dτ
¼ a0;

du1

dτ
¼ a1;

(both vectors have vanishing 2- and 3-components). Equations (2.42) and (2.43) give

� ðu0Þ2 þ ðu1Þ2 ¼ �c2; �u0a0 þ u1a1 ¼ 0: (2:44)

In addition

a μaμ ¼ �ða0Þ2 þ ða1Þ2 ¼ g2; (2:45)

Space

Time

B

A

50
years

20 years

20 years

Star

Fig. 2.2 A stays on Earth while B travels to a star and back.
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this last equation defines the constant acceleration g. These two equations have the solutions

a0 ¼ g

c
u1; a1 ¼ g

c
u0; (2:46)

from which
da0

dτ
¼ g

c

du1

dτ
¼ g

c
a1 ¼ g2

c2
u0 and hence

d2u0

dτ2
¼ g2

c2
u0: (2:47)

Similarly,

d2u1

dτ2
¼ g2

c2
u1: (2:48)

The solution to (2.48) is

u1 ¼ Aegτ=c þ Be�g τ=c;

hence

du1

dτ
¼ g

c
ðAeg τ=c � Be�g τ=cÞ:

With the boundary conditions t= 0, τ = 0; u1 = 0,
du1

dτ
¼ a1 ¼ g we find A=− B= c/2 and

hence u1 ¼ dx
dτ

¼ c sinhðgτ=cÞ. Equation (2.46) then gives

a0 ¼ du0

dτ
¼ g sinhðgτ=cÞ;

hence u0 ¼ c
dt
dτ

¼ c coshðgτ=cÞ, and finally

x ¼ c2

g
coshðgτ=cÞ; ct ¼ c2

g
sinhðgτ=cÞ: (2:49)

The space and time coordinates then fall on the hyperbola

x2 � c2t2 ¼ c4

g2
(2:50)

sketched in Fig. 2.3. The non-relativistic limits (i.e. gτ / c << 1) of x and t above are

t ¼ τ; x ¼ c2=g þ 1=2 gt2:

We may now return to the twin paradox. We saw that the amount of proper time elapsing
for B, travelling at a constant speed v = 3c/5, was 20 years for each of the journeys to and
from the star. The remaining question was, how much proper time elapses while B reverses
her velocity from + v to−v ? If this is achieved with a constant acceleration a, then we have

from (2.49)
dx
dτ

¼ c sinhðaτ=cÞ ¼ 3

5
c, hence

τ ¼ c

a
sinh�1 0:6 � 0:55c

a
:
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Hence even with only the acceleration of the Earth’s gravity, a≈ g≈ 10m s−2, τ≈ 1.6×
107 s, which is only about 6 months. The proper time that elapses during the period of
deceleration and acceleration is negligible, and we conclude that the twin paradox is not a
paradox at all; after her space journey Bianca is younger than Andrei – almost ten years
younger!

2.3 Rotating frames: the Sagnac effect

The twin paradox arises when one of two observers (twins), but not the other one, undergoes

an acceleration in Minkowski space-time; that is, motion in which
dv
dt

6¼ 0, where v is the

relative velocity of the twins. Putting v=nν, however, we may distinguish in general two

cases in which
dv
dt

6¼ 0, (i)
dn
dt

¼ 0,
dv
dt

6¼ 0; this is the case of acceleration in a straight line,

(ii)
dn
dt

6¼ 0,
dv

dt
¼ 0; this is the case of motion with changing direction but constant speed, for

example, in a rotating frame. Let us now consider this case; we expect to find, and do find,
some interesting new effects.

Let us suppose that S 0 rotates relative to S around their common z axis. It is convenient to
use cylindrical coordinates, so that in S

t

x

x = ct

x = –ct

Fig. 2.3 The hyperbola x2 � c2t2 ¼ c4=g2:
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ds2 ¼ �c2 dt2 þ dr2 þ r2 d�2 þ dz2: (2:51)

The coordinates in S 0 are related to those in S by

t0 ¼ t; r0 ¼ r; �0 ¼ �� ωt; z0 ¼ z (2:52)

and hence

ds02 ¼ �c2 dt0 2 þ dr0 2 þ r0 2ðd�0 þω dt0Þ2 þ dz0 2

¼ �ðc2 � ω2r0 2Þdt0 2 þ 2ωr0 2 d�0 dt0 þ dr0 2 þ r0 2 d�0 2 þ dz0 2:

Dropping the primes we then have for the invariant space-time interval in a rotating frame

ds2 ¼ �ðc2 � ω2r2Þ dt2 þ 2ωr2 d� dt þ dr2 þ r2 d�2 þ dz2: (2:53)

We write this in the form

ds2 ¼ gμv dx μ dxv ¼ g00ðdx0Þ2 þ 2 g0i dx
0 dxi þ gik dxi dxk ; (2:54)

where, as usual, i and k are summed over spatial indices 1–3 only. With x μ = (x0, x1, x2,
x3) = (ct, r, �, z), gμν takes on the form

gμv ¼
� 1� ω2r2

c2

� �
0

ωr2

c
0

0 1 0 0
ωr2

c
0 r2 0

0 0 0 1

0
BBBBB@

1
CCCCCA: (2:55)

The fact that the frame is rotating shows up in the g02 and g20 terms; and also g00 is affected.
In the next chapter we shall use gμν to indicate the metric tensor in a general Riemannian
(curved) space. Here gμν refers to Minkowski space-time only, but in a rotating frame.
Nevertheless, some of the observations made in this section will resurface in our future
considerations of static and stationary space-times.

Let us first consider the definitions of time intervals and distances. There is a time interval
between the events (x0, xi ) and (x0 + dx0, xi ). The invariant interval is

ds2 ¼ g00c
2 dt2 ¼ �ðc2 � ω2r2Þdt2: (2:56)

The parameter t is world time. In contrast proper time τ is defined by (see (2.21))

ds2 ¼ �c2 dτ2; (2:57)

so the relation between world time and proper time is in the general case

dτ ¼ ffiffiffiffiffiffiffiffiffiffi�g00
p

dt (2:58)

and in our particular case

dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ω2r2

c2

r
dt: (2:59)
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It is seen that time ‘goes slower’ in a rotating frame, dτ< dt. A clock on the rim of a rotating
disc will measure the elapse of a smaller amount of proper time than a clock at the centre,
given precisely by the formula above.

Now consider measuring the spatial separation between two points; call them A and B.
Familiarity with the methods of Special Relativity suggests that we use light – we send a light
signal fromA to B, where it is reflected and returns to A. The distance betweenA and B is then
defined in terms of the total proper time elapsing at A between emission and reception of the
light signals. This is illustrated in Fig. 2.4 which shows theworld-lines of A andBwith the light
signals drawn between them.3 The light leaves A at world time x0 + dx0(2), reaches B at time x0

and returns to A at x0 + dx0(1); of course we expect dx0(2) to be negative and dx0(1) positive.
Using the fact that light obeys ds2 = 0, in the notation of (2.54) we have

ds2 ¼ 0 ¼ g00 ðdx0Þ2 þ 2g0 i dx0 dxi þ gi k dxi dxk ; (2:60)

with the solutions

dx0 ¼ 1

g00
�g0i dxi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg0i g0k � g00 gikÞdxi dxk

q� 	
: (2:61)

These solutions correspond to dx0(1) and dx0(2) (note that g00 < 0). The world time interval
between the emission and reception of the signal is then

Δx0 ¼ dx0ð1Þ � dx0ð2Þ ¼ � 2

g00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg0i g0k � g00 gikÞdxi dxk

q
; (2:62)

a positive quantity. The corresponding proper time interval between these events is
cΔτ ¼ ffiffiffiffiffiffiffiffiffiffi�g00

p
Δx0, and the distance between A and B is then given by dl ¼ c

2
Δτ, or

dl2 ¼ gik � g0i g0k
g00

� �
dxi dxk : (2:63)

3 This treatment follows that of Landau & Lifshitz (1971), Section 84.

World time

A B

x 0

x  0 + dx  0(2)

x  0 + dx   0(1)

Fig. 2.4 A light signal sent from A to B and back to A.
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As an illustration of this, let us consider the points (r, �, z) and (r, � + d�, z) on a rotating disc.
If the disc is not rotating the separation between these is dl2 = r2 d�2, or dl= r d�. The
circumference C of the circle joining all such points is

C ¼
ð
dl ¼

ð2π
0

r d� ¼ 2πr; (2:64)

entirely as expected. On the rotating disc we now apply Equation (2.63) with the values of
g00, g02 = g20 and g22 read off from (2.55) to give

dl2 ¼ g22 � ðg02Þ2
g00

 !
d�2 ¼ r2 þ

ω2r4

c2

1� ω2r2

c2

0
BB@

1
CCAd�2 � r2 1þ ω2r2

c2

� �
d�2;

hence dl � 1þ ω2r2

2c2

� �
r d�. The circle joining all such points has circumference

C ¼
ð
dl � 2πr 1þ ω2r2

2c2

� �

or

C

r
¼ 2π 1þ ω2r2

2c2

� �
42π; (2:65)

exactly the criterion indicating a curved space, as discussed in Chapter 1. We conclude that
the space of a rotating disc is curved. This is not true, however, of the space-time, which is
Minkowski space-time. This latter claim must for the present be taken on trust, but the point
is that a rotating frame is given simply by a coordinate transformation – Equation (2.52)
above – and it will be shown in due course that a flat space remains flat under any coordinate
transformation. So even in a rotating frame the background space-time (Minkowski)
remains flat, but the spatial section of it becomes curved. Not only is the spatial section
radically changed; so also is the measure of time, as we now investigate.

2.3.1 Clock synchronisation

Consider events at two nearby points A and B. How do we decide if they are simultaneous?
How do we define simultaneity? As usual, we use light; we send a light signal from A to B and
back to A. Referring to Fig. 2.4, the time on A’s world-line which is simultaneous with the
event at world time coordinate x0 on B’s world-line is defined to be half-way between the
emission and reception of the light signals, i.e. at (NB:Δx0 below is different from that in (2.62))

x0 þ dx0ð1Þ þ dx0ð2Þ

2
¼ x0 � g0i dxi

g00
� x0 þ Δx0: (2:66)

In a rotating frame g0i≠ 0, so Δx0≠ 0. Using the above formula simultaneity may be
defined – and clocks therefore synchronised – at points along any open line. An attempt
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to synchronise clocks at all points along a closed line will in general fail, however, since on
return to the starting point the difference in world time recorded will be

Δx0 ¼ �
þ
g0i
g00

dxi: (2:67)

In a rotating frame of reference this integral will not vanish, so clock synchronisation is not
possible: time is not a single-valued parameter in such a situation.

The experimental consequences of this were first revealed in the Sagnac effect. Sagnac
found that the interference pattern changed when an interferometer was set in uniform
rotation.4 Beams of light traverse a closed path in opposite directions, then meet again at the
starting point and interfere (we may refer to Fig. 2.4 again). Now arrange for the whole
apparatus to rotate. We may derive an expression for the fringe shift using the formulae
above. If the axis of rotation is the z axis then the time discrepancy integrated over one circuit
is (see (2.55))

Δt ¼ 1

c
Δx0 ¼

þ
g02 dx2

g00
¼ 1

c2

þ
ωr2 d�

1� ðω2r2Þ=c2

� ω
c2

ð
r2 d� ¼ 2πωr2

c2
¼ 2Aω

c2
; (2:68)

where A= πr2 is the area enclosed by the path. The associated discrepancy in proper time is

Δτ ¼ ffiffiffiffiffiffiffiffiffiffi�g00
p

Δt � Δt (2:69)

to leading order. This results in an optical path length

l þ Δl ¼ 2πr þ cΔt ¼ Lþ 2Aω
c

; (2:70)

where L is the ‘undisturbed’ path length. For the light beam travelling in the opposite
direction the optical path length is

l � Δl ¼ L� 2Aω
c

:

When these beams interfere the difference in optical path length is
4Aω
c

, giving a fringe shift

ΔN ¼ 4Aω

cλ
: (2:71)

In Sagnac’s experiment ω= 14 rad s−1, A= 0.0863m2 and λ= 0.436× 10−6m, giving
ΔN = 0.036, in agreement with his findings; or, as he put it, ‘bien visible sur les photog-
raphies que je joins à cette Note’ – despite the fact that the relevant photographs were not
attached to the published version!

4 Sagnac (1913a, b). Sagnac’s finding was expressed in terms of the ether. Amoremodern account would be simply
to state that his experiment demonstrated the absolute nature of rotation.
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2.4 Inertia: Newton versus Mach

One recalls in memory the feeling of anxious, heart-constricting solitude and emptiness
that I daresay has crept over everyone on first comprehending the description given
by Kirchhoff and Mach of the task of physics (or science in general): a description of
facts that is as far as possible complete and as far as possible economical of thought.
(E. Schrödinger5)

Newton’s first law ofmotion states that a body subject to no forces remains at rest or continues
to move in a straight line with constant speed. (Note that by virtue of Newton’s Principle of
Relativity (or of course Special Relativity), these situations are equivalent.) Let us rephrase
this by saying ‘remains at rest or continues to move in a straight line with constant speed with
respect to X’. Then what is X? Newton replied ‘Absolute space’ and demonstrated the
existence of absolute space with his famous bucket experiment. A bucket of water is held at
rest, but hanging by a highly coiled (twisted) rope. The water surface is, of course, flat. The
bucket is then released so that the rope begins to uncoil, and the bucket starts to turn. After
some time the water also starts to rotate, as it begins to partake of the motion of the bucket.
This makes the surface of the water concave, because of the ‘centrifugal’ force on the water.
Eventually the rope becomes untwisted and the bucket stops turning; the water, however, is
still rotating and has a curved surface. At the beginning of this experiment there is no relative
motion between the bucket and the water, and the water surface is flat. Later on, however,
when both the water and the bucket are turning, there is also no relativemotion, but the surface
of the water is curved. The centrifugal force felt by the water is not due to its motion relative to
the bucket; it must be caused by its motion relative to absolute space. Inertia results from
acceleration or rotation relative to absolute space.

The Austrian physicist, mathematician and philosopher Ernst Mach (1838–1916), how-
ever, took a different view, one we should now describe as ‘positivist’; space is not ‘real’,
only matter is real. Space is simply an abstraction taken from the set of distance relations
between material objects on this view. X cannot be ‘absolute space’, it must bematter –what
is more, matter on the cosmological scale. ‘When…we say that a body preserves unchanged
its direction and velocity in space, our assertion is nothing more or less than an abbreviated
reference to the entire universe’,6 by which he meant, in effect, heavenly bodies at large
distances, commonly referred to as the ‘fixed stars’. These are thought of as defining a rigid
system, while the motion of nearby stars averages out to zero. Our knowledge of the
Universe is, of course, more detailed and more sophisticated than that obtaining in
Mach’s day. In particular we know that the distribution of matter in the Universe is, to a
very good approximation, homogeneous, so that we are not ‘at the centre’ and the ‘fixed
stars’ are not ‘near the edge’ of the Universe; moreover, the whole distribution of matter is
expanding. Nevertheless, despite our more sophisticated perspective, we may still entertain
Mach’s original, and highly interesting, suggestion by identifying X with an average
distribution of masses in the Universe.

5 Quoted in Moore (1989).
6 Mach (1919), Chapter 2, Section 6.7.
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This whole question is, of course, one about the origin of inertia, since the inertia of a
body (its inertial mass) is that property of the body which resists any motion except uniform
motion relative to X. If we want to accelerate the body, to give it non-uniform motion, we
must exert a force on it; the minute we stop exerting the force, the body will revert to uniform
motion. Then the question is, ‘Why do bodies possess inertia?’. If Mach is right, it must be
due to some sort of interaction between individual masses and the ‘rest of the Universe’.
What sort of interaction? Gravitational? Unfortunately this is not usually specified in
discussions of Mach’s ideas, making the whole subject much more difficult to discuss; it
becomes a qualitative rather than quantitative matter. It might also be objected that the
question is more philosophical than physical, since we cannot ‘do experiments on’ the
Universe; we cannot remove all the other galaxies and stars, to see if inertia disappears.
Mach would predict, of course, that in an empty universe, particles would have no inertia,
and so could move in any sort of way, including accelerated motion.

Einstein was, at least initially, much influenced byMach’s ideas: ‘In a consistent theory of
relativity there can be no inertia relatively to “space”, but only an inertia of masses relatively
to one another. If, therefore, I have a mass at a sufficient distance from all other masses in the
universe, its inertia must fall to zero.’7 He referred to the whole complex of Mach’s ideas as
Mach’s Principle and tried to incorporate this into General Relativity. It is now generally
considered that he did not succeed, but one interesting consequence of General Relativity,
the so-called Lense–Thirring effect (discussed in Section 6.2 below), predicts that inertial
reference frames outside a rotating body are actually affected by the rotation – causing, for
example, a gyroscope to precess. Newton’s hypothesis of absolute space – duly upgraded to
absolute space-time, in the spirit of Special Relativity – would certainly not allow a
phenomenon like this.

To conclude this section we consider a very interesting simple experiment that has a direct
bearing on Mach’s ideas. If the inertia (inertial mass) of a particle (for example a proton) is
affected in any way at all by mass distributions on the cosmological scale, then we would
expect an anisotropy in the inertia of any proton on Earth, as a consequence of the anisotropy
of the mass distribution of our galaxy. Then if a proton were subjected to an acceleration
towards the galactic centre its mass would be different from what it would be if the
acceleration were in a different direction. Atomic physics experiments involving the
Mössbauer effect and nuclear magnetic resonance have been performed since 1960 to find
δm/m, where m is the proton mass and δm its variation, which will result in changed
frequencies of spectral lines in hyperfine transitions, observable as the apparatus, over a
24-hour period of the Earth’s rotation, traces out different directions in the Galaxy.8 A recent
experiment gives δm < 2× 10−21 eV, or δm/m < 10−30; which would seem to offer little
support for Mach’s Principle.9

There is, however, another interpretation of this seemingly null result.10 The Equivalence
Principle implies that in any gravitational field there is a frame of reference in which its

7 Einstein (1917).
8 Hughes et al. (1960), Drever (1960); Weinberg (1972) pp. 86–88, gives a good account of these experiments.
For more recent references see Ciufolini & Wheeler (1995), Section 3.2.4.

9 Lamoreaux et al. (1986).
10 What follows is based on an observation made by Weinberg (1972), p. 87.
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effects are nullified. This is the state of ‘free fall’. For example, in the case of the elevator,
described in Section 1.2, when the supporting cable is severed, the elevator plunges down to
the centre of the Earth in free fall. It finds itself in an inertial frame of reference – the
gravitational field of the Earth and the acceleration of the box relative to the Earth cancel
each other out. Now consider an experiment performed on Earth, such as the one mentioned
above, in which an anisotropy in inertial mass is looked for. It could be argued that the
Equivalence Principle makes it impossible to detect any such effect since the experimental
apparatus will find for itself a locally inertial frame, in which, by definition, any gravita-
tional field (and therefore, presumably, any effect) of the ‘rest of the Universe’ is nullified.
No wonder a null result is found! From this perspective, Mach’s Principle is not necessarily
disproved by the experiment.

Let me conclude this section by taking these considerations slightly further, and
approaching Mach’s Principle from the perspective of particle physics. If Mach is right,
electrons at different locations in the Universe might be expected to have different masses,
but this runs completely counter to the general understanding of mass in particle physics.
Mass is, in effect, one of the Casimir operators of the Poincaré group (Wigner (1939)) and
the Poincaré group is the isometry group of Minkowski space-time, so in a locally inertial
frame the mass of an electron is fixed. It should also be noted that the idea of inertial mass
‘falling to zero’ in an empty universe does not stand up well to investigation; for by virtue of
Special Relativity particles may possess zero (rest)mass (like photons do), but it does not
follow that they possess zero inertia, as Einstein himself pointed out.11 The only entity that
might be said to possess zero inertia is the vacuum, and from quantum field theory we learn
that the vacuum is filled with particle–antiparticle pairs, to say nothing of a non-zero
expectation value of a Higgs field! While Mach’s Principle might have proved very valuable
as a stimulant to thought, it appears to be very tricky to pin down an actual demonstration
that it is correct. Perhaps the moral to be drawn is to note that the Equivalence Principle is a
local one, whereas Mach’s ideas are distinctly global. If Mach’s Principle could be imple-
mented by way of a gravitational (or some other) interaction, that would presumably be
equivalent to a local formulation –which does not work.12 Perhaps what is needed is to find
a mathematical way to describe a global principle.

2.5 Thomas precession

The phenomenon known as Thomas precession was first studied in the context of atomic
physics.13 Since it intimately involves the theory of relativity in a rather surprising way, it is
appropriate to discuss it here; and although the original setting in atomic physics might seem
to be far removed from the preoccupations of a general relativist, it is worth at least giving
this a very brief description, since the orbiting of electrons round the atomic nucleus has,

11 Einstein (1905b).
12 An attempt was made by Sciama (1953), who proposed a Maxwell-type of theory to implement Mach’s Principle,

but this theory turns out to be incompatible with Special Relativity.
13 Thomas (1926, 1927).
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despite the vast difference in scale, some similarities with the orbiting of planets round the
Sun and of satellites around planets. Indeed the whole phenomenon of spin precession of an
orbiting body is at the heart of one of the most recent and delicate tests of General Relativity,
the Lense–Thirring effect (see Section 6.2 below).

Consider the simplest case of the hydrogen atom, in which an electron orbits a proton, to
which it is bound by electromagnetic forces. The Coulomb field of the proton is

E ¼ e

4πε0r3
r (2:72)

and in this field the electron moves with velocity v ¼ dr
dt

– see Fig. 2.5. Let us define the
frames in which the electron and proton are at rest:

S : p at rest;

S0: e� at rest:
(2:73)

In S 0 the proton is moving so produces a magnetic field B0 in which the electron spin
(= intrinsic angular momentum) precesses, according to the well-known classical formula

dS
dt

¼ m � B0; (2:74)

where μ is the magnetic moment of the electron. What is B0? From the relativistic trans-
formation laws (see Section 2.6 below) the relation between the electric and magnetic fields
in frames S and S 0 is

B0 ¼ γ B� v� E
c2

� �
¼ � γ

c2
v� E;

where the second equality follows since B= 0. In the non-relativistic approximation γ≈ 1,

so B0 � � 1

c2
v� E and, using Equation (2.72) and putting L = r× p with p=mv,

B0 ¼ e

4πε0mc2r3

� �
L: (2:75)

The ‘interaction energy’ of a magnetic moment μ in a magnetic field – call it B0 – is

U ¼ �m : B0:

V

B′e–

Fig. 2.5 An electron orbiting a proton. B0 is the magnetic field produced by the proton in the frame in

which the electron is at rest.
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What is μ? For a charge q in a circular orbit, m ¼ q

2m
Lwhere L is the angular momentum of

the orbiting body. According to the Uhlenbeck–Goudsmit hypothesis for intrinsic spin,
however, the proportionality factor is different and we have

m ¼ q

m
S; (2:76)

so putting together the above equations we have for the interaction energy

U ¼ � e2

4πε0m2c2r3
ðL : SÞ: (2:77)

This is a form of binding energy of the electron in orbit, which results from the interaction
between the magnetic field of the proton and the electron’s magnetic moment, proportional
to its spin. It is known as a ‘spin-orbit’ interaction and is responsible for the so-called ‘fine
structure’ in atomic spectral lines. The details need not concern us, except to point out the
crucial fact that the above expression does not account satisfactorily for the fine structure
phenomena. The correct expression is one-half of this:

U ¼ � e2

8πε0m2c2r3
ðL : SÞ: (2:78)

It was Thomas who satisfactorily explained the occurrence of this extra factor of 2, and we
now outline his reasoning.

In Fig. 2.6 the electron is shown with velocity v at A, and a small time δt later with
velocity v+ δv at B. In addition to the frames S and S 0 let us introduce a frame S00:

S : rest frame of p;

S0: rest frame of e� at A;

S00: rest frame of e�at B:
(2:79)

The corresponding Lorentz transformations are (see (2.37))

A

B

V

V + δ  V

Fig. 2.6 The electron at A with velocity v and at B with velocity v + dv.
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S0 ! S: expð�iK:fÞ
S ! S00: exp½iK:ðfþ δfÞ�;

hence the transformation linking the frames S 0 and S 00 is

S0 ! S00: expð�iK:fÞ exp½iK:ðfþ δfÞ� � Tðf; δfÞ:
T is a transformation matrix between the coordinates of the electron at A and those at B:
x00 μ=T μ

ν x0
ν; and it is our contention that Tconsists of a rotation as well as a pure boost. This

is straightforward to prove, using the Baker–Campbell–Hausdorf formula (in which A and B
are operators; in the present context, matrices)

eAeB ¼ eAþBþ1=2½A;B�þ��� (2:80)

to give

T ¼ exp iK:δfþ 1

2
½�iK:f; iK:δf� þ � � �


 �
: (2:81)

We ignore the higher order terms. The commutator term above is

1=2½Ki;Kk ��iδ�k ¼ �1=2 iεikmJm�i δ�k ¼ iJ : ð1=2 δf� fÞ;
where the commutation relation (2.35) has been used. This is a pure rotation, through an
angle δα =½δf× f. Since the angle is infinitesimal we may find an expression for it by
noting that for infinitesimal boost parameters (i.e. small velocities – see (2.28))
�≈ sinh�= γv/c≈ v/c, so

δa ¼ 1

2c2
v� δv:

It is then clear that, in addition to the expected Lorentz boost in T (the first term in (2.81)),
there is a rotation. As the electron orbits the proton its rest frame rotates relative to the

laboratory frame and the resulting precession rate W ¼ δα
δt

is

WThomas � 1

2c2
v� a (2:82)

where a ¼ δv
δt

is the acceleration of the electron in orbit. The Thomas precession is purely
kinematic in origin; the acceleration above may have any cause. In this case, of course, it is the
electromagnetic force exerted by the proton (or nucleus), but any force will have the same result.

To complete our task we must make a connection between this precession, or rotation of
the inertial frame, and the interaction energy U introduced above, in Equations (2.76) and
(2.77). This connection comes about because of the relation between magnetic fields and
rotating frames. As every student of classical mechanics knows, the rate of change of a
quantity (let us call it spin S) in a rotating frame is related to its rate of change in a non-
rotating one by the formula14

14 See for example Goldstein (1950), Kibble & Berkshire (1996) or Morin (2007).
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dS
dt

� �
rot
¼ DS

dt
¼ dS

dt
�W� S: (2:83)

Substituting from (2.74) and (2.76) gives

DS
dt

¼ e

m
S� B0 þ m

e
W

� �
� e

m
S� Beff ; (2:84)

which defines the effective magnetic field Beff;

Beff ¼ e

4πε0mc2r3

� �
Lþ m

e

1

2c2

� �
v� a;

where Equations (2.75) and (2.82) have been used. The acceleration a, however, caused by
an electrostatic force, is given by

a ¼ F
m
¼ eE

m
¼ e2

4πε0mr3

� �
r;

giving

Beff ¼ e

4πε0mc2r3

� �
L� e

8πε0mc2r3

� �
L ¼ e

8πε0mc2r3

� �
L

and a spin-orbit interaction of

U ¼ �m :Beff ¼ � e2

8πε0m2c2r3

� �
L : S;

as desired, and as in (2.78), where (2.76) has been used. The Lie algebra relating Lorentz
boosts with rotations gives the factor of 2 necessary for agreement with experiment.

2.6 Electromagnetism

The approach to relativity in this chapter has been anti-historical. It is well known that the
paper which sprung Special Relativity on the world was entitled ‘On the Electrodynamics of
Moving Bodies’.15 Einstein exploited the fact that Maxwell’s equations kept the same form
under Lorentz, rather than Galilean, transformations, to propose a new theory of space and
time; in a word, that they defined what we now call a 4-vector, the components of which get
mixed up in a Lorentz transformation. It is now time to return to electrodynamics and review
how it is formulated in Special Relativity. Since Maxwell’s electromagnetism is already
consistent with Special Relativity, this is only a matter of getting a neat and consistent
notation. The important observation is that just as space and time become the components of
a 4-vector ‘space-time’ in Special Relativity, so all ‘geometric objects’ (for example fields)
also become either 4-vectors or quantities clearly related to them; the language of 3-vectors
has in effect disappeared.

15 Einstein (1905a).
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We define the 4-vector potential Aμ

A μ ¼ ðA0;A1;A2;A3Þ ¼ ð�;Ax;Ay;AzÞ ¼ ð�;AÞ; (2:85)

where � and A are the usual scalar and vector potentials of electromagnetism. Note the
positions of the indices in (2.85); we adopt the convention that indices 1, 2 and 3 may be
raised or lowered, whereas x, y and z always appear in a lower position. Lowering the index
with the Minkowski metric tensor (2.18) gives

Aμ ¼ ðA0;A1;A2;A3Þ ¼ ð��;Ax;Ay;AzÞ ¼ ð��;AÞ: (2:86)

Under a Lorentz transformation Λ we have (cf. (2.22))

A μ ! A0μ ¼ Λ μ
vA

v: (2:87)

The electric and magnetic fields are defined by

E ¼ � 1

c

∂A
∂t

� Δ

�; B ¼ D� A: (2:88)

Hence

Ex ¼ � 1

c

∂Ax
∂x

� ∂�
∂x

¼ �∂0A
1 � ∂1A

0 ¼ ∂ 0A1 � ∂1A0; (2:89)

Bx ¼ � ∂Az
∂y

� ∂Ay
∂z

¼ ∂2A
3 � ∂3A

2 ¼ ∂2A3 � ∂ 3A2; (2:90)

and similarly for the other components. Then defining the rank 2 tensor (i.e. an object with
two indices)

Fμv ¼ ∂ μAv � ∂vA μ; (2:91)

we have, in matrix form, labelling the rows and columns of the matrix by 0, 1, 2 and 3,

Fμv ¼
0 Ex Ey Ez

�Ex 0 Bz �By

�Ey �Bz 0 Bx

�Ez By �Bx 0

0
BB@

1
CCA; (2:92)

so for example F01 =Ex, F
21 =−Bz and so on. It is clear from the definition (2.91) that F μν is

an antisymmetric tensor, i.e. ( T = transpose)

ðFμ vÞT ¼ Fv μ ¼ �Fμ v: (2:93)

Lowering the indices yields Fμν= ημρ ηνσ F
ρσ, hence

Fμ v ¼
0 �Ex �Ey �Ez

Ex 0 Bz �By

Ey �Bz 0 Bx

Ez By �Bx 0

0
BB@

1
CCA: (2:94)

Under a Lorentz transformation
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Fμ v ! F 0μv ¼ Λ μ
ρ Λ

v
σ F

ρσ: (2:95)

Consider, for example, a boost along the x axis (see (2.25) above). Let us find out how Ex and
Ey transform. We have

E0
x ¼ F 001 ¼ Λ0

ρ Λ0
σ F

ρ σ

¼ Λ0
0 Λ

1
0 F

00 þ Λ0
0 Λ

1
1 F

01 þ Λ0
1 Λ

1
0 F

10 þ Λ0
1 Λ

1
1 F

11

¼ γ2F01 þ γv
c

� �2
F10 ¼ γ2Ex 1� v2

c2

� �
¼ Ex;

E0
x ¼ Ex:

(2:96)

In the summation above use was made of the fact that only ρ = 0,1 and σ= 0,1 give non-zero
contributions. In a similar fashion

E0
y ¼F 002 ¼ Λ0

ρΛ
2
σF

ρσ ¼ Λ0
0Λ

2
2F

02 þ Λ0
1Λ

2
2F

12

¼ γF02 þ γv

c
F12 ¼ γEy þ γv

c
Bz;

or

E0
y ¼

Ey þ v

c
Bzffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2

c2

r : (2:97)

This is an example of how electric andmagnetic fields transform in a moving frame. They do
not transform as 3-vectors (as remarked above, 3-vectors are non-kosher objects in rela-
tivity), but as the six components of an antisymmetric second rank tensor Fμν.

It is useful to define the dual field strength tensor ~Fμν:

~Fμ v ¼ 1=2εμ vρ σFρ σ (2:98)

where ε μνρσ, known as the Levi–Cività symbol, is totally antisymmetric in its indices and has
the values

ε μνρσ ¼
þ1 if ðμνρσÞ is an even permutation of ð0123Þ;
�1 if ðμνρσÞ is an odd permutation ofð0123Þ;
0 otherwise ði:e: if two or more indices are equalÞ:

8<
: (2:99)

For example,

~F 01 ¼ 1=2ε01ikFik ¼ 1=2ðε0123F23 þ ε0132F32Þ ¼ 1=2ðF23 � F32Þ ¼ F23 ¼ Bx:

The other components follow in the same way, giving

~Fμv ¼
0 Bx By Bz

�Bx 0 �Ez Ey

�By Ez 0 �Ex

�Bz �Ey Ex 0

0
BB@

1
CCA: (2:100)
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It is clear that ~Fμν is also antisymmetric:

ð~FμvÞT ¼ �~Fμv: (2:101)

In addition, the substitution F ! ~F is equivalent to

F ! ~F:E ! B; B ! �E: (2:102)

2.6.1 Maxwell’s equations

We close by expressing Maxwell’s equations in terms of the field tensor F μν and its dual.
The equations are in two sets, homogeneous and inhomogeneous:

homogeneous :

D: B ¼ 0;

D� Eþ ∂B
∂t

¼ 0;

inhomogeneous :

D: E ¼ ρ;

D� Bþ ∂E
∂t

¼ j:
(2:103)

As the reader will easily verify, the inhomogeneous equations are

∂vF
μ v ¼ j μ where j v ¼ ðρ; jÞ (2:104)

and the homogeneous ones are

∂μ~F
μ v ¼ 0: (2:105)

It will be noted that each of these is actually four equations; μ is summed and therefore a
dummy index, while ν takes on the four values 0, 1, 2, 3. Most people will agree that the
Equations (2.104) and (2.105) are slightly neater in form than (2.103). A further degree of
elegance is achieved when Maxwell’s equations are written in terms of differential forms,
which they are in the next chapter.

2.7 Principle of General Covariance

The Principle of General Covariance is a mathematical statement of the Equivalence
Principle. Consider ‘at random’ a typical equation in physics

D� E ¼ � ∂B
∂t

; (2:106)

one of Maxwell’s equations. The right and left hand sides are both vectors –more precisely,
3-vectors; and we may take the definition of a 3-vector to be a quantity with a well-defined
transformation under rotations in 3-dimensional space. Under a general rotation the coor-
dinates xi (i= 1, 2, 3) change to x0i given by

x0i ¼ Ri
kx

k ; (2:107)
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where Ri
k is a rotation matrix (and summation over k is understood). Under rotations,

distance from the origin is preserved: x2 + y2 + z2 = x02 + y02 + z02, or

x0ix0i ¼ xixi;

which with (2.107) gives

Ri
kRi

m ¼ δmk ;

the matrix R is orthogonal. (It may be pointed out that an example of R is the 3× 3 part of the
Lorentz matrix (2.24), whose orthogonality is easy to check.) A vector is by definition a
quantity whose components transform in the sameway as xi under a coordinate transformation:

V i ! V 0i ¼ Ri
k V

k : (2:108)

We are at present thinking in terms of a Minkowski world, a flat space-time in which it is
conceivable to have the rotation matrix R a constant – the same rotation is to be performed at
each point in space-time. Equivalently the transformation is linear, and in that case Equation
(2.107) may be differentiated to give

∂x0 i

∂x j
¼ Ri

j

and (2.108) becomes

V 0i ¼ ∂x0 i

∂x j
V j; (2:109)

the law of transformation for contravariant vectors, as we shall see below.
Maxwell’s equation (2.106) is a vector equation: so if an experimentalist finds this

equation to be valid in a frame of reference S, another experimentalist working in the
relatively rotated frame S 0 will find the same equation

Δ0 � E0 ¼ � ∂B0

∂t
;

the time parameter t is unaffected by the rotation. This is simply an example of the
invariance of the laws of physics (in this case one ofMaxwell’s equations) under the rotation
of reference frames (to be distinguished, of course, from rotating reference frames, which
are non-inertial). And this requirement in turn follows from the isotropy of space – there is
no distinguished direction in space.16

As spelled out in the previous section, this invariance under rotations may be extended to
include Lorentz transformations, and then the set of all Maxwell’s equations takes on the
form (2.104) and (2.105). The point being made here is that all these equations may be
expressed in the form

T ¼ 0;

16 The connection between symmetries, conservation laws and invariance principles is beautifully and carefully
examined in several essays by Wigner; see for example the collection Wigner (1967).
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where T is a quantity with a well-defined transformation property under rotations and/or
Lorentz transformations; in formal terms T is a tensor of rank n (where n= 0 corresponds to a
scalar, n = 1 to a vector – either a 3-vector, for rotations, or a 4-vector to include Lorentz
transformations, n = 2 to a rank 2 tensor, such as F μν; and so on). To return, for the sake of
definiteness, to our example, if T is the vector quantity

A ¼ Δ� E þ ∂B
∂t

then Equation (2.106) is the statement that A = 0; and if this holds in frame S, then in S
0
,

obtained from S by a rotation, we also have A0 = 0. This is nothing but relativity.
We may now consider how to generalise this observation. We have seen that a uniform

acceleration produces, locally, the same effect as a gravitational field. The coordinate
transformation for an acceleration along the x axis,

x0 ¼ x þ at2;

is, however, non-linear, so our generalisation might be that the laws of nature in the presence
of a gravitational field are tensor equations under any coordinate transformations, linear
or non-linear. This is the so-called Principle of General Covariance, and the logic just
described would justify the term ‘general’ in ‘General Relativity’; generalising linear
to non-linear transformations in order to include gravity. The term ‘covariance’ means,
as usual, that the laws of physics take the same form for observers in relative motion.
The Principle of General Covariance does not, however, fully account for General
Relativity. General Relativity describes gravitational fields in terms of a curved space-
time, as we shall see below, and as was indicated by the thought-experiment described in
Section 1.3.

Further reading

Recent reviews of the Sagnac effect may be found in Post (1967), Chow et al. (1985),
Anderson, Bilger & Stedman (1994) and Stedman (1997). A remarkable experiment
involving interference of neutrons, rather than light, to detect the rotation of the Earth was
performed by Colella et al. (1975). For an up-to-date review of these matters see Rauch &
Werner (2000), Chapter 7.

Readable accounts of Mach’s Principle can be found in Bondi (1960), Sciama (1969),
Weinberg (1972), Misner et al. (1973), Rindler (1977, 2001), Ciufolini & Wheeler (1995),
Cao (1997), Harrison (2000) and Jammer (2000). A good review is Raine (1981) and a
useful more recent reference is Barbour and Pfister (1995). An interesting, if brief, account
of Mach’s ideas on the philosophy of physics may be found in Moore (1989).

Thomas precession is discussed in Robertson & Noonan (1968), Møller (1972), Jackson
(1975) and Bacry (1977), and a rather interesting account is given in Rindler (2001). For its
role in the context of atomic physics, see for example Cohen-Tannoudji et al. (1977) or
Shankar (1980).
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Problems

2.1 Consider the following experiment in the Einstein train. A light, situated at the centre of
train A, is switched on and light beams travel up the train and down the train to reach the
front and rear doors of the train at the same time, as viewed by an observer on the train.
Show that, as viewed from a moving train, the arrival of the light at these two points is
not simultaneous, but reaches the rear of the train at a time γvL/c2 before reaching the
front. This is an example of the relativity of simultaneity.

2.2 Show that FμνFμν= 2(−E :E +B :B) and ~F
μν
Fμν ¼ �4E :B.
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3 Differential geometry I: vectors, differential
forms and absolute differentiation

It is almost impossible for me to read contemporary mathematicians who, instead of
saying, ‘Petya washed his hands’, write ‘There is a t1 < 0 such that the image of t1 under
the natural mapping t1 → Petya(t1) belongs to the set of dirty hands, and a t2, t1 < t2≤ 0,
such that the image of t2 under the above-mentioned mappings belongs to the comple-
ment of the set defined in the preceding sentence …

V. I. Arnol’d

In this chapter we introduce the mathematical language which is used to express the
theory of General Relativity. A student coming to this subject for the first time has to
become acquainted with this language, which is initially something of a challenge.
Einstein himself had to learn it (from his friend Marcel Grossmann). The subject is
widely known as tensor calculus; it is concerned with tensors and how to define and
differentiate them in curved spaces. In more recent times tensor calculus has been recast
using a more sophisticated formalism, based on coordinate-free notation and differential
forms. At first physicists were disinclined to learn this higher grade language, since it
involved more work, without, perhaps, any reward in terms of mathematical or physical
insight. Eventually, however, sceptical minds became convinced that there were indeed
pay-offs in learning this new formalism, and knowledge of it is now almost essential to
read research papers in the field of General Relativity. This chapter covers the notions of
vectors, differential forms, tensors and covariant (or absolute) differentiation, and the
next one goes on to consider curvature, which, of course, as a property of space-time,
plays a starring role in Einstein’s theory. We begin by considering the general notion of
a differentiable manifold.

3.1 Space-time as a differentiable manifold

A simple mathematical model of space-time is a Cartesian product of three spatial variables
and one time variable, and a point in this 4-dimensional space may be considered to
represent an ‘event’ (t, x, y, z) in space-time. This, however, is slightly too simple: the
Newtonian–Galilean Principle of Relativity tells us that an observer (in an inertial frame)
regarding himself as stationary will mark the ‘same’ point in space by for instance tapping
at it every second. A second observer (also inertial) moving relative to him will however
see these points as different points in space. The idea of a ‘point in space’ therefore has to be
replaced by an equivalence class of points related by a group of transformations x0 =x− vt
etc. – the Galileo group. Time is taken as absolute in the Newtonian–Galilean scheme.



In Special Relativity this group is enlarged to the Lorentz group, in which time is no
longer absolute, and one consequence of the relativity of time is the twin paradox, consid-
ered in Section 2.2. In this ‘paradox’ we noted (see Fig. 2.2) that a closed path in space
(consisting of A’s journey followed by the reverse of B’s journey) results in a change of time,
showing that space and time are not independent of each other. In more technical language,
space-time is an example of a fibre bundle, in which a closed path in the base space (‘space’
in this example) results in movement along the fibre (‘time’). Locally, however, a fibre
bundle is simply a direct product of two manifolds, even if this is not true globally.

In General Relativity we have the additional feature that space-time becomes curved.
In such places as the Solar System the curvature will only be slight but in some circumstances,
for example near the horizon of a black hole, it may become highly curved, and even
topologically non-trivial. We shall be wanting, of course, to denote points in space-time by
a system of coordinatisation: how does this work in a curved space? Consider for example the
sphere S2: it is a 2-dimensional curved surface, in general coordinatised by θ, �. Locally, in the
neighbourhood of any point P on S2 we may introduce Cartesian coordinates (x, y) but
these cannot be made to cover the whole sphere without ambiguity. Neither, in fact, may θ
and� be used to cover the spherewithout ambiguity: at the north pole (θ= 0)� is undefined, as
is also the unit vector �̂ – at the north pole, every direction is south! These problems may be
overcome by having two coordinate systems; so on the Earth, for example, we would have
the usual one, with θ= 0, π at the N and S poles. A second coordinate systemwould have θ=0
at for example Concordia, Argentina, on the Uruguay border, at 32° S, 58° W, and θ= π
Nanjing, 32° N, 118° E. Then the one coordinate system may be employed unambiguously
everywhere except at the N and S poles, and the other one everywhere except at Concordia and
Nanjing. At all other points on the Earth’s surface there is a smooth transformation from one
coordinate system to the other one. We generalise this construction to define a manifold as an
(n-dimensional) space of arbitrary curvature whichmay be coordinatised by a series of charts,
as shown in Fig. 3.1. The charts are for simplicity taken to be (open subsets of) Rn and in the
overlapping regions ofM there is a transformation between them.

M

R n
R n

Fig. 3.1 A region of an n-dimensional manifold M is considered to consist of two overlapping regions,

each coordinated by a chart in Rn. In the area of overlap there is a transformation from one

coordinatisation to the other.
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We saw in the last chapter that there is an equivalence between accelerating frames and
gravitational fields, as illustrated in the Einstein box experiment. But as was pointed out
there only homogeneous gravitational fields with constant magnitude and direction can be
described in this way. Real gravitational fields – for example at different points on the Earth
or in the Solar System – cannot be eliminated by any single coordinate transformation. To
preserve the usefulness of the equivalence principle we need different transformations at
different points, like the chart above.

3.2 Vectors and vector fields

Let us recall how to describe vectors in (flat) 3-dimensional Euclidean space R3. We may
write them in different forms, for example

V ¼ Vxiþ Vyjþ Vzk or V ¼ Vr r̂þ Vθ q̂þ V�f̂; (3:1)

where i, j, k are unit vectors in the x, y, z directions, and r̂; q̂; f̂ unit vectors in the r, θ, �
directions. The coefficients of these unit vectors are the components ofVwith respect to the
different basis vectors. We may write the Equations (3.1) in the generic form

V ¼ V iei; (3:2)

where the summation convention is used: i is summed from 1 to 3. The vector V has
components V i in the basis with basis vectors ei.

We want to generalise our formalism to describe vector fields in a space-time with
arbitrary curvature. How do we do it? We want to retain the feature above, of describing
vectors themselves, as well as their components in a particular coordinate system. First,
the generalisation from 3-dimensional space to space-time is straightforward: (3.2) is
replaced by

V ¼ V μeμ (3:3)

where μ is summed over the values 0, 1, 2, 3.1 We next introduce the key concept of a curve
in a manifold. A parametrised curve in a manifold M is a mapping of an interval in R1 into
M – see Fig. 3.2 – while a local chart on M is mapped into Rn, as explained above. The
interval inR1, and therefore the curve into which it is mapped, is parametrised by λ, taking on
values from 0 to 1. A point P on the curve may then be assigned local coordinates x μ(λ) .
Suppose f (x μ) is a function on M (i.e. a mapping from M to R1). Then we may put

f ðx μðλÞÞ ¼ gðλÞ:
The differential of the function along the curve is

1 We adopt the convention that Greek indices are used in the general case, as well as in 4-dimensional space-time.
Latin indices take on the values 1, 2, 3 and are therefore used in the specifically space section of space-time, as
well as in examples of 2-and 3-dimensional spaces.
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dg
dλ

¼
X
μ

dx μ

dλ
∂f
∂x μ

;

which may be expressed as an operator identity

d
dλ

¼
X
μ

dx μ

dλ
∂
∂x μ

;

which in turn, adopting the summation convention, may be written

d
dλ

¼ dx μ

dλ
∂
∂x μ

:

Comparing this with Equation (3.3) above we may identify
dx μ

dλ
with the components of

a vector tangent to the curve,
∂
∂x μ

as the basis vectors, and
d
dλ

as the tangent vector to the

curve at P. But really these are vector fields since they vary with P; so
d
dλ

is a tangent

vector field which changes with λ. We are here creating a correspondence between two

languages:

vector $ tangent to curve;

or, to emphasise the different areas of mathematics involved,

vector $ derivative:

ðgeometryÞ ðanalysisÞ
Vectors defined at P lie in the tangent space toM at P, denoted TP. This may be visualised as
the whole plane of vectors tangent to a curved surface, drawn in Fig. 3.3 as a sphere. We
should note some features of the above construction:

* vectors lie in the tangent space to M at P;
* the picture of the tangent plane just given relies on an ‘embedding’ – the 2-sphere S2 is

embedded in R3. This helps visualisation but is not actually necessary. The tangent space

a

a b

M
P

b

λ
λ = 0 λ = 1

Fig. 3.2 A parametrised curve in M.
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TP is obtained by taking all possible curves through P, and evaluating
d
dλ

����
P

with
d
dλ

¼ dxi

dλ
∂
∂xi

;

* vectors defined at two different points have no relation to each other. We can only add or
subtract vectors at the same point P.

Let us illustrate the above ideas by considering vectors in 3-dimensional Euclidean space R3,
in spherical polar coordinates. In the usual notation we have

r ¼ r sin θ cos� iþ r sin θ sin� jþ r cos θ k

to denote the position of some point P. Then we define

er ¼ ∂r
∂r

¼ sin θ cos� iþ sin θ sin� jþ cos θ k;

eθ ¼ ∂r
∂θ

¼ r cos θ cos� iþ r cos θ sin� j� r sin θ k;

e� ¼ ∂r
∂�

¼ �r sin θ sin� iþ r sin θ cos� j:

(3:4)

Appealing to Fig. 3.3 we have the directions
∂
∂r
,
∂
∂θ

,
∂
∂�

, which are respectively perpendic-

ular to the surface (and not shown in the diagram), due south and due east (viewing the
sphere as a globe). With the (standard basis) normalisation

i : i ¼ j : j ¼ k : k ¼ 1; i : j ¼ j : k ¼ k : i ¼ 0

we have

er : er ¼ 1; eθ : eθ ¼ r2; e� : e� ¼ r2 sin2θ; er : eθ ¼ er : e� ¼ eθ : e� ¼ 0: (3:5)

Making the identifications i= ∂/∂x , j= ∂/∂y, k = ∂/∂z, we may rewrite Equations (3.4) as

x

y

z

φ

θ

∂ ∂φ

∂ ∂θ

Fig. 3.3 Tangent plane to the sphere S2.
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er ¼ ∂
∂r

¼ sin θ cos�
∂
∂x

þ sin θ sin�
∂
∂y

þ cos θ
∂
∂z

;

eθ ¼ ∂
∂θ

¼ r cos θ cos�
∂
∂x

þ r cos θ sin�
∂
∂y

� r sin θ
∂
∂z

;

e� ¼ ∂
∂�

¼ �r sin θ sin�
∂
∂x

þ r sin θ cos�
∂
∂y

;

(3:6)

with the orthogonality conditions (3.5). The system is clearly not orthonormal, but it is
straightforward to define an orthonormal set of vectors, denoted with a hat

êr ¼ er; êθ ¼ 1

r
eθ; ê� ¼ 1

r sin θ
e�; (3:7)

with

êr : êr ¼ êθ : êθ ¼ ê� : ê� ¼ 1; êr : êθ ¼ êr : ê� ¼ êθ : ê� ¼ 0: (3:8)

This has given us a new language in which to describe vectors. We now turn to the
notion of vector fields; we must generalise the idea of a vector at P to a vector defined at
each point of the manifold M – to take a simple example, the electric field vector E due
to some space charge density ρ(r). Since there is a tangent space at every point of M, a
vector field will select one vector in the tangent space at each point of M. The question
is, can all these tangent vectors be written as tangents to some curve? The converse is
certainly true – given some curve, we may define a vector field, since the curve has a
tangent at every point. And indeed the answer to our question is ‘yes’: given a vector
field, a curve does (locally) exist such that the tangent to it is the vector at each point
(see for example Choquet-Bruhat (1968), p. 21). In mathematical language the question
is, do the equations

dxi

dλ
¼ v iðxmÞ

have a solution? These are first order differential equations, for which in general a local
solution exists. Given vi, we can find xi(λ), which is called the integral curve of the vector
field. This holds at every point P – at all xi – so that at every point inMwe may draw the the
integral curve of a vector field through that point, and these curves ‘fill’M. Such a manifold-
filling set of curves is called a congruence.

Figure 3.4 displays examples of some vector fields, or rather of the integral curves of
vector fields. The respective fields are

(i)
∂
∂θ

¼ �y
∂
∂x

þ x
∂
∂y

;

(ii) r
∂
∂θ

¼ x
∂
∂x

þ y
∂
∂y

;

(iii) y
∂
∂y

;

(iv)
∂
∂x

:
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Two-dimensional space R2 may be filled with congruences of vector fields of any of these
types. Let us now observe that the commutator of two vector fields is itself a vector field.
Putting

V ¼ V i∂i; U ¼ Um∂m; (3:9)

we have, operating on any function f,

½V;U� f ¼ V i∂iðUm∂m f Þ � Um∂mðV i∂i f Þ ¼ V i ∂U
m

∂xi
� Ui ∂V

m

∂xi

� �
∂m f ;

where in the second equality we have relabelled the indices – the second order terms cancel.
Hence we have the operator identity

½V;U� ¼ W; (3:10)

with

W ¼ Wn∂n; Wn ¼ V i ∂U
n

∂xi
� Ui ∂V

n

∂xi
: (3:11)

The commutator [V, U] is called the Lie bracket or commutator of the respective vector
fields.

Lie brackets may be used to make a distinction between types of basis. Put V =Viei,
where ei denotes the set of basis vectors. (In the following we consider the plane R

2, but the
generalisation to other spaces is obvious.)

(i) (ii)

(iii) (iv)

Fig. 3.4 Examples of vector fields.
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3.2.1 Holonomic and anholonomic bases

If

½ei; ek � ¼ 0; (3:12)

the basis is called a coordinate or holonomic one. For example, in R2, if

e1 ¼ ∂
∂x

; e2 ¼ ∂
∂y

;

the basis is holonomic. Similarly if

e1 ¼ ∂
∂r

; e2 ¼ ∂
∂θ

;

it is likewise holonomic. It is clear that if ei is simply a derivative with respect to a coordinate
the basis is holonomic; hence the alternative name coordinate basis.

If, on the other hand, for some i≠ k

½ei; ek � 6¼ 0; (3:13)

the basis is called a non-coordinate or anholonomic one. For example (again confining
ourselves to R2) if, in the polar coordinate system, we put

e1 ¼ ∂
∂r

; e2 ¼ 1

r

∂
∂θ

; (3:14)

then

½e1; e2� ¼ � 1

r2
∂
∂θ

¼ � 1

r
e2: (3:15)

It is usual to write the commutators as linear combinations of the basis elements, thus:

½ei; ek � ¼ Cm
ik em; (3:16)

where the coefficients Cm
ik are called the structure constants of the Lie algebra. In an

anholonomic basis, therefore, not all the structure constants are zero. In the above

example C2
12 ¼ �C2

21 ¼ � 1

r
and the others are zero. Clearly in a holonomic basis all

the structure constants are zero.
We now have a language in which to describe vectors, exemplified by Equations (3.2) and

(3.3). It remains for us to demonstrate that such expressions are independent of coordinate
systems. This is completely straightforward, since under a transformation x μ → x0μ we have

V μ ! V 0μ ¼ ∂x 0μ

∂x λ
V λ; (3:17)

and, if {eμ} and {e0μ} are coordinate bases, i.e. eμ ¼ ∂
∂x μ

, e0μ ¼ ∂
∂x 0μ

eμ ! e0μ ¼ ∂xν

∂x 0μ
ev; (3:18)
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and hence

V ! V 0μe0μ ¼ ∂x 0μ

∂x λ
∂xv

∂x 0μ
V λ eν ¼ V λ eλ ¼ V; (3:19)

where we have used the identity (which follows from the fact that xν= xν(x0μ))

∂xν

∂x λ
¼ δνλ ¼ ∂x 0μ

∂x λ
∂xν

∂x 0μ
: (3:20)

3.3 One-forms

The definition of vectors given above involved the specifying of basis vectors, which are in
essence directions along coordinate lines – ∂/∂x, ∂/∂r etc. This gives a sense to the idea that a
vector is a quantity ‘with magnitude and direction’. But there is another type of ‘vector’
quantity defined in elementary calculus, which is the gradient of a (scalar) function. For
example the function f (x, y, z) has a gradient

r f ¼ ∂ f
∂x

iþ ∂ f
∂y

jþ ∂ f
∂z

k:

As a simple illustration consider the surface S2(sphere) r= const in R3. Taking the normal to
the surface we have

r r ¼ ∂ r
∂ x

iþ ∂ r
∂ y

jþ ∂ r
∂ z

k ¼ x

r
iþ y

r
jþ z

r
k ¼ 1

r
r ¼ er;

r θ ¼ ∂ θ
∂ x

iþ ∂ θ
∂ y

jþ ∂ θ
∂ z

k ¼ cos θ cos�
r

iþ cos θ sin�
r

j� sin θ
r

k ¼ 1

r2
eθ;

r� ¼ ∂�
∂ x

iþ ∂�
∂ y

jþ ∂�
∂ z

k ¼ � sin�
r sin θ

iþ cos�
r sin θ

j ¼ 1

r2 sin2θ
e�:

In this case the gradients are proportional to the vectors er, eθ, e�, with eθ, e� spanning
the tangent space to S2. This, however, is not typical, since a spherical surface in a flat
3-dimensional space has a very high degree of symmetry. Conceptually, gradients and basis
vectors are distinct; basis vectors are associated with coordinate lines, but gradients with
‘lines of steepest descent’ from one surface to another, as sketched in Fig. 3.5. This differ-
ence may be shown up by considering a non-orthogonal coordinate system in R3; define u, v
and w by

x ¼ uþ v; y ¼ u� v; z ¼ 2 u vþ w

with inverse

u ¼ 1=2ðxþ yÞ; v ¼ 1=2ðx� yÞ; w ¼ z� 1=2ðx2 � y2Þ:
It is clear that u = const and v = const are plane surfaces, whereas w= const is a hyperboloid.
These surfaces are sketched in Fig. 3.6. With r= (u+ v)i+ (u− v)j+ (2uv +w)k we find
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eu ¼ ∂ r
∂ u

¼ iþ jþ 2vk; ev ¼ i� jþ 2uk; ew ¼ k: (3:21)

It is clear that eu and ev are not unit vectors, whereas ew is. In addition,

eu : ev ¼ 4uv; eu : ew ¼ 2v; ev : ew ¼ 2u; (3:22)

the vectors are not orthogonal. The direction of eu, for example, is given by a line of
intersection of the planes v = const andw = const – a line along which only u changes. Thus it
is pictorially clear that ew is proportional to k, as in (3.21) above; the intersection of the
planes u= const and v= const is parallel to the z axis. On the other hand this is not
perpendicular to the surface w = const. It is straightforward to calculate the gradient vectors,
which we now denote with an upper suffix:

(a)

(b)

(c)

r = r0

r = r0 + δr

θ = θ0 + δθ

θ = θ0

φ = φ 0 + δφ
φ = φ 0

Fig. 3.5 Lines of steepest descent from one surface to another in R3: (a) surfaces of constant r – spheres,

(b) surfaces of constant θ – cones, (c) surfaces of constant f – planes.
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r u ¼ ∂ u
∂ x

iþ ∂ u
∂ y

jþ ∂ u
∂ z

k ¼ 1=2 iþ 1=2 j ¼ eu;

r v ¼ 1=2 i� 1=2 j ¼ ev;

rw ¼ �ðuþ vÞ iþ ðu� vÞ jþ k ¼ ew:

(3:23)

As is easily checked from (3.21)–(3.23) these gradient vectors obey

eu : eu ¼ ev : ev ¼ ew : ew ¼ 1; eu : ev ¼ ev : ew ¼ ew : eu ¼ 0: (3:24)

Gradients are thus dual to basis vectors. They are conceptually distinct entities, and in fact
are somewhat analogous to reciprocal lattice vectors in solid state physics; indeed Pauli2

refers to them in this way. They are now however referred to as ‘one-forms’ or 1-forms.

(a)

(b)

(c)

Fig. 3.6 Surfaces (a) u = constant (plane), (b) v = constant (plane), (c) w = constant (hyperboloid).

2 Pauli (1958), Section 10.
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Instead of denoting them as eu, as above, it is common to use Greek letters for 1-forms. We
shall adopt this convention, and therefore have the following situation. In a manifold we
may define vector fields V in terms of a basis set eμ

V ¼ V μeμ (3:25)

and dual to these we define 1-forms ω, also in terms of a basis set θ μ

w ¼ ωμq μ; (3:26)

and the duality of the basis sets is commonly expressed using angular brackets:

hq μ; eνi ¼ δμ
ν: (3:27)

Equation (3.27) is simply the general form of (3.24) in the particular example considered
above, expressing the duality of vectors and 1-forms. Following from this we have

hw;Vi ¼ ωνV
μhqν; eμi ¼ ωμV

μ: (3:28)

As may be seen from Fig. 3.5, a 1-form may be viewed as a series of parallel surfaces,
which may be regarded as being ‘pierced’ by vectors. Misner et al. (1973) (see
particularly Chapter 8) use the memorable phrase ‘bongs of the bell’ to describe a
relation such as (3.28); as the vector V pierces the surfaces given by ω the number
ωμV

μ is the number of bongs of the bell, each ‘bong’ corresponding to one surface being
pierced by a unit vector.

Just as the vectors eμ are basis vectors in the tangent space TP at P, where the vectors are
defined, so θμ, the basis 1-forms, are the basis forms in the cotangent space TP* at P. These
are defined, however, not just at the single point P but in the tangent and cotangent spaces at
all points in the manifold, which is to say the tangent and cotangent bundles:

eμ are basis vectors in tangent bundle;

q μ are basis 1-forms in contangent bundle:
(3:29)

It is perhaps useful to remark here that this subject, like many others in physics and
mathematics, is beset by different notation conventions. The duality (3.28) is also commonly
written as

hw;Vi ¼ wðVÞ ¼ ωμV
μ: (3:30)

The components of a vector V and a 1-form ω may then variously be written as

V μ ¼ hq μ;Vi ¼ q μðVÞ;
ων ¼ hw; e νi ¼ wðe νÞ;

(3:31)

so a 1-form basis θμ may be used to map a vector V into one of its components V μ (in other
words onto R1); and a vector basis eμmaps a 1-formω into one of its components. This is the
sense in which the basis of 1-forms is dual to the basis eμ of vectors, and the n-dimensional
space of 1-forms is the dual space TP

* to the tangent space TP.
This language is not so strange as it may seem. There are several analogous concepts with

which the reader must already be familiar:
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(i) Corresponding to a (column) vector in R3,
a
b
c

0
@

1
A is the dual (row) vector (p q r) such

that p q rð Þ
a
b
c

0
@

1
A¼ paþ qbþ rc, a real number (belonging to R1).

(ii) In the complex 2-dimensional space C2, corresponding to the vector z = x+ iy is the
complex conjugate z* = x− iy , such that z*z = x2 + y2, a real number.

(iii) In quantum mechanics a vector in Hilbert space is denoted by the Dirac ket vector |ψ〉.
Its dual is the bra vector 〈ψ| so that 〈ψ|ψ〉 is a real number (a c-number).

There is one further, and rather crucial, piece of notation to introduce. In the previous
section we introduced the notion that vectors, in particular basis vectors, may be represented
as operators, so that e1 = ex= ∂/∂x etc. It is then a natural question, what corresponding
notational development is made for the dual one-form e1 = θ1? The answer is that it is
denoted dx. The duality relation (3.25) then reads

hdx; ∂=∂ xi ¼ 1 (3:32)

or, in general

dx μ;
∂
∂xν

� �
¼ δμ

ν: (3:33)

The 1-form dxμ is not the same as the infinitesimal dxμ; it is not a ‘number’, but a member of
the cotangent space TP

*. This mathematical language is more sophisticated than the lan-
guage of ‘classical’ calculus. Though it might seem in danger of becoming unnecessarily
difficult, it actually gets rid of some embarrassments encountered there, concerning the idea
of ‘infinitesimally small’ changes dxi in the coordinates xi: to obtain the gradient of a
function f (xi), for example, as we were taught at school, we consider an infinitesimally
small change in xi, dxi, find the corresponding ‘infinitesimally small’ change in f, which we
denote df, and divide them, to get ∂f/∂xi ! This is hardly a very satisfactory procedure, but, as
remarked by Spivak:3

No-one wanted to admit this was nonsense because true results were obtained when these
infinitely small quantities were divided into each other (provided one did it in the right
way). Eventually it was realised that the closest one can come to describing an infinitely
small change is to describe a direction in which this change is supposed to occur, i.e. a
tangent vector. Since df is supposed to be the infinitesimal change in f under an
infinitesimal change of the point, df must be a function of this change, which means
that df must be a function on tangent vectors. The dxi themselves then metamorphosed
into functions, and it became clear that they must be distinguished from the tangent
vectors ∂/∂xi. Once this realisation came, it was only a matter of making new definitions,
which preserved the old notation, and waiting for everybody to catch up. In short, all
classical notions involving infinitely small quantities became functions on tangent
vectors, like df, except for quotients of infinitely small quantities, which became tangent
vectors, like df/dt.

3 Spivak (1970), pp. 4–6. The italics are mine.
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(In this last quantity c denotes a curve, with t a parameter along it; wewould simply denote this
d/dt.) The remark that df is a function on tangent vectors is then to be understood as follows:

df ¼ ∂ f
∂ x μ

dx μ; then df ;
∂

∂ x μ

� �
¼ ∂f

∂ x μ
; (3:34)

the contraction of df with a tangent vector yields the quantity ∂f /∂xμ.

3.3.1 Transformation rules

One-forms, like vectors, have the same form in different coordinate systems. Under a
transformation x μ → x μ0 the (coordinate) basis θμ transforms as

q μ ! q0μ ¼ ∂ x 0μ

∂ x ν
q ν (3:35)

and the components ων as

ων ! ω0
ν ¼

∂ x λ

∂ x 0ν
ω λ (3:36)

so that ω =ωμθ
μ is invariant:

w ! ω0
μq

0 μ ¼ ∂ x λ

∂ x 0 μ
∂ x 0 μ

∂ x �
ωλ q � ¼ ωλq λ ¼ w; (3:37)

in analogy with (3.17–3.19). In more old-fashioned language the transformation rules (3.17)
and (3.36) are respectively the transformation rules for covariant and contravariant vector
fields. What we now call vectors have components in a given coordinate system which
transform ‘contravariantly’, and what we now call 1-forms have components in a given
coordinate systemwhich transform ‘covariantly’. For convenience we state the formulae again:

covariant vector : V μðxÞ ! V 0 μðxÞ ¼ ∂x 0 μ

∂x λ
ðxÞ V λðxÞ;

contravariant vector : VνðxÞ ! V 0
νðxÞ ¼

∂x λ

∂x 0ν
ðxÞ VλðxÞ:

(3:38)

These formulae emphasise, by including the arguments (x), that these vector fields are
defined at a specific point x, and the transformation coefficients are evaluated at the same

point. The reader will appreciate that for non-linear transformations the coefficients
∂x 0μ

∂x λ
and

∂x λ

∂x 0ν
will themselves depend on x. The above transformation laws are specific to one

particular point in the manifold.

3.3.2 A note on orthogonal coordinate systems

It may be instructive to illustrate the above ideas with the simple case of the polar coordinate
system (r, θ) in the plane R2. From the equations x = r cos θ, y = r sin θ and their inverses
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r = (x2 + y2)−½, θ = tan−1(y/x), and recalling that
∂x
∂r

means
∂x
∂r

� �
θ

, while
∂r
∂x

means
∂r
∂x

� �
y

, it

is straightforward to find that

∂x
∂r

¼ ∂r
∂x

¼ cos θ;
∂y
∂r

¼ ∂r
∂y

¼ sin θ; etc:

If a vector then has the contravariant components (V x, Vy), (Vr, Vθ ), the following relations
will then hold

Vr¼ ∂ r
∂ x V

x þ ∂ r
∂ y V

y ¼ Vx cos θ þ Vy sin θ;

V θ¼ � � � ¼ 1
r ð�Vx sin θ þ Vy cos θÞ: (3:39)

The covariant components on the other hand obey

Vr ¼ ∂ x
∂ r

Vx þ ∂y
∂ r

Vy ¼ Vx cos θ þ Vy sin θ;

Vθ ¼ rð�Vx sin θ þ Vy cos θÞ:
(3:40)

Neither (3.39) nor (3.40), however, describes the ‘normal’ relations between the Cartesian
and polar components of a vector. The ‘ordinary’ components �Vr; �Vθ are given by4

�Vr ¼ hrV
r; �Vθ ¼ hθV

θ

where

ds2 ¼ dx2 þ dy2 ¼ hr
2 dr2 þ hθ

2 dθ2 ¼ dr2 þ r2 dθ2;

and hence hr = 1, hθ= r. Then with �Vx ¼ Vx; �Vy ¼ Vy we have

�Vr ¼ Vr ¼ �Vx cos θ þ �Vy sin θ; �Vθ ¼ rV θ ¼ ��Vx sin θ þ �Vy cos θ: (3:41)

In addition, the relation between the ordinary and the covariant components is

�Vr ¼ 1

hr
Vr ¼ Vr ¼ �Vx cos θ þ �Vy sin θ;

�Vθ ¼ 1

hθ
Vθ ¼ 1

r
Vθ ¼ ��Vx sin θ þ �Vy cos θ:

(3:42)

Equations (3.39–3.42) summarise the relations between the contravariant, covariant and
‘ordinary’ components of a vector. It should be remarked that the quantities hi , introduced
above, depend on the metric, i.e. on ds2, a quantity which remains to be introduced – see
Section 3.8 below.

3.4 Tensors

A vector is

V ¼ V μeμ; (3:43)

4 See, e.g. Arfken (1970), Chapter 2, Panofsky & Phillips (1962), Appendix III, or Weinberg (1972), p. 108.
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where V μ are the components in the given basis eμ. A 1-form is

w ¼ ωνqν; (3:44)

whereων are the components in the basis θν, which is dual to the basis eμ. We can then define

a tensor – more precisely, an
r
s

� �
tensor – as the geometric object that has components in

the space which is the Cartesian product of r basis vectors and s basis 1-forms:

T ¼ Tα...β
λ...μ eα � � � � � eβ � q λ � � � � � q μ; (3:45)

Tα…β
λ…μ are the components in the given basis. Avector, then, is a

1
0

� �
tensor and a 1-form

a
0
1

� �
tensor. It is common to omit the Cartesian product signs⊗ in the above formula and

simply write

T ¼ Tα...β
λ...μ eα . . . eβq λ . . . q μ: (3:46)

(We should also note that instead of θμ, the 1-form basis is sometimes written eμ.) In a
different basis e 0α, θ 0λ etc., the same tensor is written

T ¼ T 0α...β
λ...μ e0α � � � � � e0β � q0λ � � � � � q

0μ:

The components of a tensor in a particular basis may, using the notation of Equation (3.31),
be written as

Tα...β
λ...μ ¼ Tðqα; . . . ; q β; eλ; . . . ; eμÞ; (3:47)

i.e. on inserting the bases eλ and the dual bases θα into the tensor we may obtain its
components in this basis. This is analogous to (3.31).

Analogous to the formulae (3.38), the relation between the components of a tensor, with
both contravariant and covariant indices, in two different bases is given by

T
0α...β0

λ...μðxÞ ¼ ∂ x 0α

∂ x ρ
ðxÞ . . . ∂ x

0β

∂ x σ
ðxÞ ∂ x

�

∂ x 0λ
ðxÞ . . . ∂ x

v

∂ x 0μ
ðxÞ T ρ...σ

�...νðxÞ; (3:48)

where again the arguments (x) are included, as in (3.38) above. It is worth observing that this
is a homogeneous transformation law. If all the components of a tensor are zero in one frame,
they are also zero in any other frame – we may say that the tensor ‘is zero’. An important
application of this remark will be the characterisation of curvature. It is important to say of a
space whether it is curved or flat – whether the curvature is non-zero or zero; this must be a
statement about the space itself, and not about a particular coordinate system. We shall
therefore define a curvature tensor, with the important property that if it is zero (non-zero) in
one coordinate system it is zero (non-zero) in all coordinate systems. It is also worth
remarking that whereas tensors, like vectors and 1-forms, may be given a neat geometric
definition (Equation (3.45) above), for many practical purposes it is best to consider the
components of the tensor in a particular coordinate system; and then, on transforming to
another coordinate system, the components reorganise themselves as in (3.48). Let us now
consider various operations on tensors. We begin with contraction.
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3.4.1 Contraction

Consider Tα…β
κ…λ , an

r
s

� �
tensor, with r upper and s lower indices. It is said to be of rank

r + s. If one lower index is put equal to one upper one and a summation is performed over all

the relevant components, what results is an
r � 1
s� 1

� �
tensor; its rank has been reduced by 2.

So for example Tα…β
κ…β is an

r � 1
s� 1

� �
tensor (since the summation convention means that

the summation is carried out without explicit indication). The proof of this is straightfor-

ward, but let us consider for simplicity a particular case. Tαβ
μ is a

2
1

� �
tensor. Our claim is

that Tαβ
α is a

1
0

� �
tensor – in other words a vector. The proof depends on the transformation

formula (3.48). We have, from (3.48) and (3.20)

T 0α β
α ¼ ∂ x 0α

∂ x �

∂ x 0β

∂ x λ
∂ x μ

∂ x 0α
T� λ

μ ¼ ∂ x 0β

∂ x λ
T μ λ

μ

which is precisely the transformation law for a vector, Equation (3.7). This proves our
claim.

3.4.2 Symmetry and antisymmetry

The symmetric or antisymmetric part of a tensor with respect to either its upper or its lower

indices may be defined. The convention is to use round brackets for symmetrisation, so that

for example, if T is an
r
s

� �
tensor then

T ð�...λÞ
μ...ν

¼ 1

r!
fsum over all permutations of the r indices � . . . λ of T �...λ

μ...νg (3:49)

is symmetric on interchange of any of its upper indices. Square brackets are used for
antisymmetrisation, so that for example

T�...λ½μ...ν�

¼ 1

s!
falternating sum over all permutations of the s indices μ . . . ν of T �...λ

μ...νg:
(3:50)

To take some simple examples,

T ð� λÞ
μ ¼ 1=2ðT� λ

μ þ T λ�
μÞ;

T ½� λ�
μ ¼ 1=2ðT� λ

μ � T λ�
μÞ;

T ½� λ μ�
ρ σ ¼ 1=6ðT� λ μ

ρ σ þ T λ μ�
ρ σ þ T μ� λ

ρ σ � T� μ λ
ρ σ � T μ λ�

ρ σ � T λ� μ
ρ σÞ:

(3:51)
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A tensor is called symmetric in a given set of (upper or lower – contravariant or covariant)
indices if it is equal to its symmetric part on these indices; and it is called antisymmetric if it
is equal to its antisymmetric part. It is important that the properties of symmetry or

antisymmetry are intrinsic to the tensor – they are the same in all bases. For example if

Sκλ=− Sλκ in some basis (S is an antisymmetric
2
0

� �
tensor), then

S0μ ν ¼ ∂ x 0 μ

∂ x �

∂ x 0 ν

∂ x λ
S� λ ¼ � ∂ x 0 μ

∂ x �

∂ x 0 ν

∂ x λ
Sλ� ¼ �S0 ν μ;

it is antisymmetric in all other bases. In terms of the tensor itself S = Sμνeμeν, we have
(see for example (3.47)) S(θμ, θν) = Sμν, and the statement of antisymmetry is the
statement

S μ ν ¼ �Sν μ ) Sðq μ; q νÞ ¼ �Sðq ν; q μÞ
and since this is true for a basis it is true for all ω, σ, i.e.

Sðw;sÞ ¼ �Sðs;wÞ: (3:52)

3.4.3 Quotient theorem

It is clear from the transformation rules above that the sum and the difference of two tensor

fields of the same type – say rank
p
q

� �
tensors – and defined at the same point – is also a

tensor field of that type. It is also clear that the outer product (product involving no

contractions) of two tensors, one of type
p
q

� �
and the other of type

r
s

� �
, is itself a tensor,

of rank
pþ r
qþ s

� �
. To complete these findings there is a further result, which goes by the

name of the quotient theorem, according to which if we have an (outer) product of two

objects and it is known that the product is a tensor, say of type
pþ r
qþ s

� �
, and one of the

constituent objects is also a tensor, say of type
r
s

� �
, then the other object in the product is

itself a tensor, of rank
p
q

� �
. This theorem is clearly a sort of inverse of the previous result

concerning outer products, but the proof is not quite so straightforward. We here consider a

special case, from which the reader will have no difficulty in being able to construct the

general case. Suppose that

T μ ν
� λ ¼ U μ S ν

� λ

and T is known to be a tensor and U is known to be a contravariant vector (i.e. a tensor of

rank
1
0

� �
); then we claim that S is a

1
2

� �
tensor . To do this we introduce an arbitrary
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contravariant vector ηκ and an arbitrary covariant vector ξρ and multiply T above by ξμ ξν
ηκ ηλ and sum (i.e. contract) over repeated indices:

T μ ν
� λ �μ �ν η

�η λ ¼ ðU μ �μÞSν� λ �ν η�η λ:

The left hand side is a scalar (since all indices are contracted), and so is (Uμ ξμ ). It follows
that Sνκλ ξν η

κηλ is also a scalar, i.e.

S0ν� λ �ν η0�η λ ¼ S ν
� λ �ν η

� η λ:

However, since ξ and η are co- and contra-variant vectors this gives

S0ν� λ
∂ x α

∂ x 0ν
∂ x 0�

∂ x ρ
∂ x 0λ

∂ x σ
�α η

ρ ησ ¼ Sν� λ �ν η
�η λ ¼ Sαρ σ �α η

ρ ησ ;

where the second equality follows on relabelling the indices. But ξ and η are arbitrary
vectors so this implies that

S0ν� λ
∂ x α

∂ x 0ν
∂ x 0�

∂ x ρ
∂ x 0λ

∂ x σ
¼ Sαρ σ:

Now multiply by
∂x 0τ

∂x α
∂x ρ

∂x 0ζ
∂x σ

∂x 0μ
and use (3.20) to give

S0τ ζ μ ¼ ∂ x 0τ

∂ xα
∂ x ρ

∂ x 0ζ
∂ x σ

∂ x 0μ
Sαρ σ;

which is the transformation law for a
1
2

� �
tensor.

3.5 Differential forms: Hodge duality

One-forms are dual to vectors, as we have seen; but they possess another sort of duality –

they are dual to lines. The integral of a one-form over a line is a number (belonging to R1).
Consider for example the 1-form in R3

w1 ¼ a1 dxþ a2 dyþ a3 dz: (3:53)

The line integral of ω1 over a line c1 isð
c1

ω1 ¼ number: (3:54)

Let us call a line a 1-chain; thenwe have a duality between a 1-form and a 1-chain. This duality
is a consequence of integration but follows from the previously noted duality between a
1-form and a vector, since integration is simply the summation along the path of the
contraction of the form with the tangent vector at that point. Now the notion of a 1-chain is
easily generalised: we may call an area a 2-chain c2, a volume a 3-chain c3, a 4-volume (say in
space-time) a 4-chain c4, and so on – and with this logic, c0, a zero-chain, is a point:
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c0: 0-chain : point

c1: 1-chain : line

c2: 2-chain : area

c3: 3-chain : volume

c4: 4-chain : 4-volume

etc:

(3:55)

Then wemay define a 2-formω2 as dual to a 2-chain: when integrated over an area c2 it gives
a number: ð

c2

ω2 ¼ number: (3:56)

We shall now see that a 2-form, defined in this way, is not simply a product of 1-forms, but
an antisymmetric product. This is basically because c2 itself is antisymmetric. Consider the
area A of a parallelogram defined by the vectors v and w (see Fig. 3.7); it is given by

A ¼ v� wj j:
By convention A > 0, but v×w=− w× v, so A is antisymmetric under interchange of v
and w. This notation is, however, unsatisfactory; it is the notation of 3-vectors, whereas we
are concerned only with a 2-dimensional space. Taking v andw (locally) to be in the xy plane
we have

� A ¼ vx wy � vy wx ¼ vx vy
wx wy

����
���� ¼ v1 v2

w1 w2

����
���� (3:57)

(we take A > 0). Now the components vi may be written as

(3:58)v i ¼ dx iðvÞ(3:58)
where dxi is a 1-form and we are using the notation in (3.31). Then we define the 2-form5

dxi ^ dx k ¼ dx i � dxk � dxk � dx i: (3:59)

This antisymmetric product is commonly called a ‘wedge product’. It then follows that

v

w

Fig. 3.7 The vectors w and v form a parallelogram.

5 Some writers include a symmetry factor of ½ on the right hand side of this definition; see for example Choquet-
Bruhat (1968), p. 56. Our definition is the same as that ofMisner et al. (1973), p. 99, and Sexl & Urbantke (1983),
p. 204.
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dxi ^ dxk ðv ;wÞ ¼ dxiðvÞdxk ðwÞ � dxkðvÞ dxi ðwÞ
¼ viwk � vkwi

¼ vi vk

wi wk

����
����: (3:60)

The quantity dxi∧dxk is an area 2-form. A general 2-form, for example in R3, in local
(Cartesian) coordinates is (i, k= 1, 2, 3)

w2 ¼ ai kdxi ^ dxk (3:61)

with ð
c2

ω2 ¼ number: (3:62)

Since, from (3.59) we have

dx1 ^ dx2 ¼ � dx2 ^ dx1; dx1 ^ dx1 ¼ 0; etc: (3:63)

then (3.61) gives

w2 ¼ ða12 � a21Þdx1 ^ dx2 þ ða23 � a32Þ dx2 ^ dx3 þ ða31 � a13Þdx3 ^ dx1;

so without loss of generality aik may be assumed to be antisymmetric in i and k – the
symmetric part makes no contribution to ω2. A general 2-form in R3 may be written

w2 ¼ P dx2 ^ dx3 þ Q dx3 ^ dx1 þ R dx1 ^ dx2; (3:64)

and we observe that there are three basic 2-forms in R3. Similarly the volume 3-form is

dx1 ^ dx2 ^ dx3:

Clearly

dxi ^ dx j ^ dxk ¼ εi j kdx1 ^ dx2 ^ dx3;

and there is only one basic 3-form in R3. The generic 3-form is

w3 ¼ Fðx; y; zÞ dx1 ^ dx2 ^ dx3; (3:65)

with ð
c3

ω3 ¼ number: (3:66)

We may summarise the p-forms in R3 in Table 3.1.
It should be clear that there are no 4-forms or higher forms (5-forms, etc.) in R3. An

example of a 4-form would be F(x, y, z) dx1∧dx2∧ dx3∧ dx2, which is zero, by virtue
of (3.63).

For completeness we also display p-forms in R2 in Table 3.2.
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It is clear that in R2 there are no 3- or higher forms. Finally we display a table (3.3) of
p-forms in Minkowski space-time (n= 4). Again, it is clear that there are no 5- or higher
forms in Minkowski space.

From the tables it is also clear that in an n-dimensional space, the number of independ-
ent p-forms is the same as the number of independent (n− p)-forms: for example in
Minkowski space (n = 4) the dimensionality of the basis of 1-forms is the same as that
of 3-forms (both = 4). This is in fact a general result, not confined to the cases we have
considered, and it suggests the possibilty of a mapping between the two spaces of p-forms
and (n− p)-forms. This mapping is effected by the Hodge star operator (or Hodge *
operator):

� ðp-formÞ ¼ ðn� pÞ-form: (3:67)

The general formula is the following:

� ðdxi1 ^ dxi2 ^ � � � ^ dxipÞ ¼ 1

ðn� pÞ! ε
il ...ip

ipþ1...indx
ipþ1 ^ � � � ^ dxin : (3:68)

Table 3.1 p-forms in R3

p p-form Basis (local Cartesian) Dimensionality

0 f (x1, x2, x3) 1 1
1 a1 dx

1 + a2 dx
2 + a3 dx

3 dx1, dx2, dx3 3
2 P dx2∧ dx3 +Q dx3∧ dx1 +R dx1∧ dx2 dx2∧ dx3, 3

dx3∧ dx1,
dx1∧ dx2

3 F(x, y, z) dx1∧ dx2∧ dx3 dx1∧ dx2∧ dx3 1

Table 3.2 p-forms in R2

p Basic p-forms Dimensionality

0 1 1
1 dx, dy 2
2 dx ∧ dy 1

Table 3.3 p-forms in Minkowski space-time

p Basic p-forms Dimensionality

0 1 1
1 dt, dx, dy, dz 4
2 dt∧ dx, dt∧ dy, dt∧ dz, dx∧ dy, dy∧ dz, dz∧ dx 6
3 dt∧ dx∧ dy, dt∧ dx∧ dz, dt∧ dy∧ dz, dx∧ dy∧ dz 4
4 dt∧ dx∧ dy∧ dz 1
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The ε symbol above needs some explanation. For spaces with a positive definite metric no
distinction needs to be made between upper and lower indices. In Minkowski space-time
indices are lowered with the Minkowski metric tensor (2.18); they are also raised with it,
since its inverse is itself. We work with the convention

ε0123 ¼ 1 ¼ �ε0123: (3:69)

So for n= 2 we have

� 1 ¼ εij
2!

dxi ^ dxj ¼ dx ^ dy;

� dx ¼ dx1 ¼ ε1i dxi ¼ dy;

� dy ¼ � dx;

� dx ^ dy ¼ ε12 1 ¼ 1:

(3:70)

We may perform the * operator a second time to give

�� 1 ¼ 1;

�� dx ¼ �dx; �� dy ¼ � dy;

�� dx ^ dy ¼ dx ^ dy:

(3:71)

For n = 3 we have

� 1 ¼ dx ^ dy ^ dz;

� dx ¼ dy ^ dz and cyclic perms;6

� dx ^ dy ¼ dz and cyclic perms;

� dx ^ dy ^ dz ¼ 1;

(3:72)

and hence

�� 1 ¼ 1

�� dx ¼ dx; �� dy ¼ dy; �� dz ¼ dz;

�� dx ^ dy ^ dz ¼ dx ^ dy ^ dz:

(3:73)

Finally, for Minkowski space-time (n= 4) we have

� 1 ¼ �dt ^ dx ^ dy ^ dz;

� dt ¼ dx ^ dy ^ dz; � dx ¼ dt ^ dy ^ dz; etc:

� dx ^ dy ¼ � dt ^ dz; � dt ^ dx ¼ dy ^ dz; etc:

� dx ^ dy ^ dz ¼ dt; � dt ^ dy ^ dz ¼ dx; etc:

� dt ^ dx ^ dy ^ dz ¼ 1;

(3:74)

and, as a consequence,

6 i.e. *dy=dz∧ dx, *dz=dx∧ dy.
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�� 1 ¼ � 1

�� dx ¼ dx; etc:

�� dx ^ dy ¼ � dx ^ dy; etc:

�� dx ^ dy ^ dz ¼ dx ^ dy ^ dz; etc:

�� dt ^ dx ^ dy ^ dz ¼ � dt ^ dx ^ dy ^ dz:

(3:75)

The general formula for a p-form in spaces with a positive definite metric (like R2 and R3) is

��wp ¼ ð�1Þpðn�pÞwp; (3:76)

in Minkowski space there is an extra minus sign: and since n = 4 we find

��wp ¼ ð�1Þp�1wp; (3:77)

in accordance with (3.75).

3.5.1 Remarks on the algebra of p-forms

Let us revert to considering 2-forms; and first show that if ω and σ are both 1-forms

w ¼ ai q i; s ¼ bk q k ;

then their wedge product is a 2-form:

w ^ s ¼ ai bk q i ^ q k

¼ 1=2ðai bk � ak biÞ q i ^ q k

¼ ci k q i ^ q k (3:78)

with

ci k ¼ �ck i ¼ 1=2ðci k � ck iÞ ¼ c i k½ �;

the coefficients cik are the components of an antisymmetric
0
2

� �
tensor. It is then clear that

ω∧ σ is a 2-form, and also that

w ^ s ¼ �s ^ w: (3:79)

Analogous relations hold for general wedge products. Let α be a p-form and β a q-form, so
that

a ¼ ak1���kp q
k1 ^ � � � ^ qkp ¼ a k1���kp½ � qk1 ^ � � � ^ qkp (3:80)

and the coefficients a½k1...kp� are the components of a totally antisymmetric
0
p

� �
tensor.

A similar formula holds for β and it then follows, by manipulations similar to those which
lead to (3.79), that

a ^ b ¼ ð�1Þ p q b ^ a: (3:81)
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3.5.2 A note on orientation

We saw above that the area A of a parallelogram defined by the vectors v, w is ±
vx vy
wx wy

����
����

(and A is always taken to be positive). For simplicity take v and w to be at right angles, and
let us assume that in some local Cartesian coordinate system v is in the +x direction andw in
the +y direction; then

A ¼ vx vy
wx wy

����
���� ¼ vx 0

0 wy

����
����40:

If, however, the x and y axes are interchanged (see Fig. 3.8), we find that

vx vy
wx wy

����
���� ¼ 0 vy

wx 0

����
����50:

If a space has the property that it is possible to define A > 0 consistently over the whole
space, the space is called orientable. Otherwise it is non-orientable. In an orientable space
the existence of two distinguishable classes A > 0 and A < 0 allows a global distinction
between right-handed and left-handed coordinate systems over the space, but this will not
hold in a non-orientable one. An example of a non-orientable (2-dimensional) space is the
Möbius strip, illustrated in Fig. 3.9. A coordinate system is set up at P , and it is seen that
after transporting it round the band to Q the x and y axes have been interchanged, so a
consistent definition of the sign of A over the surface is not possible. The Möbius strip is
actually also an example of a fibre bundle. This is seen as follows: a cylinder is made by
drawing a rectangle and joining together the edges marked with arrows, so that the arrows
are aligned, as in Fig. 3.10(a). Coordinatising the rectangle, this means that the point (1, y)
becomes identified with the point (−1, y). If, however, one of the arrows on the rectangle is
inverted, then joining the edges in such a way that the arrows are still aligned results in a
Möbius strip, as in Fig. 3.10(b). This corresponds to the identification of the points (1, y) and
(−1,−y) in the original rectangle. Now compare the rectangles in (a) and (b). Moving from
the point (1, y), keeping y constant but with x decreasing, describes a journey on the cylinder
where we eventually return to the original point – so that x has completed a circuit and y has
remained unchanged. But on the Möbius strip after x has completed a circuit, from x= 1 to
x =−1, y has changed. This means it is not possible to define a Cartesian coordinate system
over the whole space; the space may be coordinatised by (x, y), but this does not represent a

x

v

w

y

y

v

w

x

Fig. 3.8 (see text)
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Cartesian product of x and y. Calling the x axis the base space and the y axis the fibre, a
closed circuit in the base space results in a motion along the fibre. (The reader will recall that
it was argued at the beginning of this chapter that space-time is a fibre bundle.)

3.6 Exterior derivative operator: generalised
Stokes’ theorem

We have seen that (in an n-dimensional space) we may introduce 1-forms, with a corre-
sponding line integral, and 2-forms, with a corresponding area integral – as well as 3-forms,
with a volume integral, and so on. Consider, however, Stokes’ theoremð

A : ds ¼
ð
r� A : dS : (3:82)

(a)

(b)

Fig. 3.10 Making (a) a cylinder, (b) a Möbius strip, from a rectangle by gluing edges together.

Q
P

x
x

y

y

Fig. 3.9 Transport of coordinate axes (x, y) round the Möbius strip, from P to Q results in an interchange

x ↔ y (as may be seen by rotating the axes at Q by π/2).
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The left hand side is a line integral – the integral of a 1-form, while the right hand side is an
area integral – the integral of a 2-form. The very existence of a theorem like Stokes’ theorem
implies that theremust be a relation between 1-forms and 2-forms. In a similar way, Gauss’s
theorem relates an integral over an area to one over a volume, implying a relation between
2-forms and 3-forms. We now investigate this relation and find a beautiful generalisation of
Stokes’ theorem, applicable to general forms, which yields both Stokes’ theorem and
Gauss’s theorem as special cases.

The key to finding the relation is to define an exterior derivative operator d which
converts a p-form into a (p+ 1)-form. Let ω be the p-form

w ¼ a 1;... ; pðxÞ dx1 ^ � � � ^ dx p: (3:83)

then

dw ¼ ∂ ai1���ip
∂ xk

dx k ^ d xi1 ^ � � � ^ d xip : (3:84)

Clearly dω is a (p+ 1)-form. For example let θ be a 1-form in R3

q ¼ ax dx þ ay dy þ az dz; (3:85)

then

dq ¼ ∂ ax
∂ y

dy ^ dx þ ∂ ax
∂ z

dz ^ dx þ ∂ ay
∂ x

dx ^ dy

þ ∂ ay
∂ z

dz ^ dy þ ∂ az
∂ x

dx ^ dz þ ∂ az
∂ y

dy ^ dz

¼ ∂ay
∂x

� ∂ax
∂y

� �
dx ^ dy þ ∂az

∂y
� ∂ay

∂z

� �
dy ^ dz

þ ∂ax
∂z

� ∂az
∂x

� �
dz ^ dx; (3:86)

which is evidently a 2-form. Note that the coefficients of the three basis forms are respec-
tively the z, x and y components of ∇ × a . Similarly let ω be the 2-form (in R3)

w ¼ bx dy ^ dz þ by dz ^ dx þ bz dx ^ dy; (3:87)

then

dw ¼ ∂bx
∂x

þ ∂by
∂y

þ ∂bz
∂z

� �
dx ^ dy ^ dz ; (3:88)

a 3-form. Its coefficient is ∇ · b. The exterior derivative operator d operating on a 1-form
gives a 2-form, and on a 2-form gives a 3-form; it combines, as is clear from the manipu-
lations above, the operations of differentiation and antisymmetrisation. These features now
give an interesting and surprising result, and to illustrate it let us calculate d2θ = d(dθ),
which should, according to the logic above, be a 3-form.
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d2q ¼ d
∂ay
∂x

� ∂ax
∂y

� �
dx ^ dyþ ∂az

∂y
� ∂ay

∂z

� �
dy ^ dzþ ∂ax

∂z
� ∂az

∂x

� �
dz ^ dx

� �

¼ ∂
∂z

∂ay
∂x

� ∂ax
∂y

� �
þ ∂
∂x

∂az
∂y

� ∂ay
∂z

� �
þ ∂
∂y

∂ax
∂z

� ∂az
∂x

� �	 

dx ^ dy ^ dz

¼ ðr :r� aÞ dx ^ dy ^ dz

¼ 0; (3:89)

since ∇ ⋅∇× a= div curl a = 0 for any well-behaved vector field a. That is, d2 acting on a
general 1-form gives a vanishing 3-form.

This, in fact, is a general result; for example let f (x, y, z) be a 0-form (a function) then df is
a 1-form

df ¼ ∂ f
∂ x

dx þ ∂ f
∂y

dy þ ∂ f
∂ z

dz ;

and

d 2 f ¼ d
∂ f
∂ x

dx þ ∂ f
∂y

dy þ ∂ f
∂ z

dz
	 


¼ ðr �r f Þ z dx ^ dy þ ðr �r f Þ x dy ^ dz þ ðr �r f Þ y dz ^ dx

¼ 0 ;

since ∇×∇ f= curl grad f= 0 for any well-behaved function f. The general result,

d 2 ¼ 0; (3:90)

is known as the Poincaré lemma; d2, acting on any differential form, gives zero.7 The
following is a useful identity: if ω is a p-form and θ a q-form, then

d ðw ^ qÞ ¼ dω ^ q þ ð�1Þ p w ^ dθ: (3:91)

Proof: Put

w ¼ a1 ...p d xi1 ^ � � � ^ d xip ; q ¼ b 1 ...q d xk1 ^ � � � ^ d xkq

then

dðw ^ qÞ ¼ dða 1 ...p b 1 ...q d xi1 ^ � � � ^ d xip ^ d xk1 ^ � � � ^ d xkq

¼ fðd a 1...pÞ b 1...q þ a 1...p ðd b1...qÞ g ^ d xi1 ^ � � � ^ d xip ^ d xk1 ^ � � � ^ d xkq

¼ ðd a 1...p ^ d xi1 ^ � � � ^ d xipÞ ^ ðb 1...q d xk1 ^ � � � ^ d xkqÞ
þ ð�1Þpða 1...p d xi1 ^ � � � ^ d xipÞ ^ ðdb 1...q ^ d xk1 ^ � � � ^ d xkqÞ

¼ dω ^ q þ ð�1Þpw ^ dq: □

7 For a general proof, see for example Schutz (1980), p. 140.
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3.6.1 Generalised Stokes’ theorem

Letω be a p-form, and let c be a (p + 1)-chain. Define ∂, the boundary operator on chains, so
that ∂c is the boundary of c ; ∂c is a p-chain. Two simple examples are drawn in Fig. 3.11; in
(a) c is an area (2-chain) which is bounded by the closed line ∂c , a 1-chain. In (b) c is a
volume (3-chain) bounded by the surface ∂c, a (closed) 2-chain. Note that in both these cases
the boundary is itself closed; ∂c has no boundary, or

∂ ð∂cÞ ¼ ∂ 2c ¼ 0:

This is a general result for p-chains:

∂ 2 ¼ 0 ; (3:92)

and may be understood as being a result ‘dual’ to the Poincaré lemma d2 = 0, (3.90) above.
The boundary operator ∂ is dual to the exterior derivative operator d.

Having defined the boundary operator we are now in a position to state the generalised
Stokes’ theorem, which is ð

∂c

w ¼
ð
c

dw: (3:93)

Stokes’ theorem holds in any space, but to illustrate it let us work in R3; and first consider the
case p= 1. Then ω is a 1-form, of the type (3.85), and c is an area, with boundary ∂c, as in
Fig. 3.11(a). The 2-form dω is given by (3.86), where, as remarked already, the coefficients
are the components of ∇ × a. Then (3.93) givesð

∂c

a:dl ¼
ð
c

ðr � aÞ:n dS (3:94)

where dΣ is an element of surface area, with unit normal n. This is clearly Stokes’ theorem.
As a second example take the case p= 2, so ω is a 2-form, and therefore of the form (3.87);
dω is the 3-form given by (3.88). The 3-chain c is a volume V with boundary ∂c = ∂V
(Fig. 3.11(b)) and (3.92) then gives

c

c
∂c

∂c

(a) (b)

Fig. 3.11 (a) An area c is bounded by the closed line ∂c; (b) a volume c is bounded by the (closed) surface ∂c.
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ð
∂V

b : n dS ¼
ð
V

ðr : bÞ dV : (3:95)

The reader will recognise this as Gauss’s theorem.
It will be appreciated that the generalised Stokes’ theorem is a neat and powerful theorem.

The reader will doubtless recall that the ‘usual’ formulation of Stokes’ and Gauss’s theorems
requires the stipulation of ‘directional’ notions – the normal n is an outward, not an inward,
normal; and in Stokes’ theorem the path round the closed boundary is taken in an anticlock-
wise sense. These notions are however automatically encoded in the present formulation
based on the exterior derivative operator, which, as we have seen, antisymmetrises and
differentiates at the same time.

3.6.2 Closed and exact forms

It may be helpful to make some more general remarks about differential forms and
the spaces in which they are defined. First, if ωp is a p-form in some space and ωp− 1 is a
(p− 1)-form, we can make the following definitions. If dωp= 0, ωp is called closed

dwp ¼ 0; wp closed: (3:96)

If, on the other hand, ωp= dωp− 1 for some (p− 1)-form ωp− 1, ωp is called exact,

wp ¼ dwp�1; wp exact: (3:97)

Because of the Poincaré lemma (3.90), all exact forms are closed. But are all closed forms
exact? For example, if B=∇×A, then ∇ :B= 0; but if ∇ :B= 0, does it follow that
B =∇×A for some A? The answer is ‘yes’ if the space is Rn, which is topologically trivial;
but it is not ‘yes’ in general. Because of the duality between forms and chains the question
may be reformulated as a question about chains, and hence as a question about the space
itself, rather than the forms defined in it. So we make the following definition: let cp be a
p-chain. If ∂cp = 0, cp is closed

∂cp ¼ 0; cp closed: (3:98)

If, however, cp = ∂cp+ 1 for some cp+ 1, then cp is the boundary of a (p + 1)-chain:

cp ¼ ∂cpþ1; cp boundary: (3:99)

Then because ∂2 = 0 ((3.92) above) it follows that all chains which are boundaries are also
closed – boundaries themselves have no boundary, or, as Misner et al. (1973) put it, ‘the
boundary of a boundary is zero’. But the question remains, if cp is a boundary, is it also
closed? – does ∂cp = 0 imply cp = ∂cp+ 1? This is the dual of the question, ‘are all closed
forms exact?’, but it has the advantage that the situation is much easier to visualise. We first
of all may state that in Rn, the answer is ‘yes’ – all chains which are closed – which have no
boundary – are themselves the boundaries of other chains. For example, in R3, a circle S1 is
the boundary of the area it encloses and a spherical surface S2 is the boundary of the volume
it encloses. In spaces with a non-trivial topology, however, we may get more interesting
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answers. Consider for example a torus (‘doughnut’) T 2 shown in Fig. 3.12. This is a
2-dimensional space – it is the surface only that is being considered. Now consider the
1-chains c1 and c2 on T 2. They are both closed: ∂c1 = 0, ∂c2 = 0. However, c1 is the boundary
of an area (a 2-chain) a1, c1 = ∂a1; whereas c2 is not the boundary of any area a2 defined
on T2 , c2≠ ∂a2. By virtue of duality this means we can state that there are 2-formsω defined
on T2 which are closed but not exact; dω= 0, but ω≠ dθ, where θ is a 1-form. These
considerations mark the introduction of the subjects of homology, cohomology, de Rham’s
theorem, etc.; see ‘Further reading’ for other references to these topics.

3.7 Maxwell’s equations and differential forms

We now consider the formulation of Maxwell’s equations (in Minkowski space) using
differential forms. In this section for simplicity we use units in which c= 1, so that x0 = t.
The basic 1-, 2-, 3- and 4-forms in Minkowski space are shown above in Table 3.3. We may
therefore define a 1-form A:

A ¼ A0 dx0 þ A1 dx1 þ A2 dx2 þ A3 dx3 ¼ Aμ dx μ ; (3:100)

where (see (2.85) and (2.86)) A0 =− � (scalar potential) and Ai =Ai (vector potential); and a
2-form F:

F ¼ 1=2Fμν dx μ ^ dxν

¼ �F0i dxi ^ dx0 þ Fij dxi ^ dxj

¼ Ei dxi ^ dt þ Bx dy ^ dz þ By dz ^ dx þ Bz dx ^ dy
¼ ðEx dx þ Ey dy þ Ez dzÞ ^ dt þ Bx dy ^ dz þ By dz ^ dx þ Bz dx ^ dy:

(3:101)

It is then straightforward to calculate the 3-form dF:

dF ¼ ∂Ey

∂x
� ∂Ex

∂y

� �
dx ^ dy ^ dt þ ∂Ez

∂y
� ∂Ey

∂z

� �
dy ^ dz ^ dt

þ ∂Ex

∂z
� ∂Ez

∂x

� �
dz ^ dx ^ dt þ r : Bdx ^ dy ^ dz þ ∂Bx

∂ t
dt ^ dy ^ dz

þ ∂By
∂ t

dt ^ dz ^ dx þ ∂Bz
∂ t

dt ^ dx ^ dy:

(3:102)

c1c1

c 2

Fig. 3.12 Circles c1 and c2 on the surface of a torus.
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We also calculate the 2-form dual to F:

�F ¼ 1=2Fμ ν � dx μ ^ dxν

¼ F10 � dx ^ dt þ F20 � dy ^ dt þ F30 � dz ^ dt

þ F12 � dx ^ dy þ F31 � dz ^ dx þ F23 � dy ^ dz

¼ �Ex dy ^ dz � Ey dz ^ dx � Ez dx ^ dy þ ðBz dz þ By dy þ Bx dxÞ ^ dt

(3:103)

as well as its exterior derivative (a 3-form):

d � F ¼�r :Edx ^ dy ^ dz� ∂Ex

∂ t
dt ^ dy ^ dz� ∂Ey

∂ t
dt ^ dz ^ dx

� ∂Ez

∂ t
dt ^ dx ^ dyþ ∂Bz

∂x
� ∂Bx

∂z

� �
dx ^ dz ^ dt

þ ∂By

∂x
� ∂Bx

∂y

� �
dx ^ dy ^ dt þ ∂Bz

∂y
� ∂By

∂z

� �
dy ^ dz ^ dt: (3:104)

We may also write down the current 3-form j= jμ *dx
μ. With jμ= (− ρ, j) (see (2.104)) we

have

j ¼ j0 � dx0 þ ji � dxi
¼ �ρ dx ^ dy ^ dzþ jx dy ^ dz ^ dt þ jy dz ^ dx ^ dt þ jz dx ^ dy ^ dt:

(3:105)

Now consider the equation

d � F ¼ j: (3:106)

Comparing the coefficients of dx∧ dy∧ dz gives ∇ : E = ρ; and inspection of the coeffi-

cients of dy∧ dz∧ dt yields the x component ofr� B� ∂E
∂t

¼ j. From (2.103) these are the

inhomogeneous Maxwell’s equations

∂νF
μν ¼ j μ: (3:107)

The homogeneous Maxwell’s equations are

dF ¼ 0; (3:108)

since, from (3.101) the coefficient of dx∧ dy∧dz gives ∇ :B = 0; and the coefficient of

dx∧ dy∧ dt gives the z component of r� E þ ∂B
∂t

¼ 0. Together, these are the homoge-
neous equations – see (2.103) and (2.105).

Note that the equation dF = 0 implies, in a topologically trivial space like Minkowski
space-time, that F = dA – that is, if F is closed, it is exact – and in component language this is
simply

Fμν ¼ ∂μAν � ∂νAμ; (3:109)

as in (2.91); Fμν is the 4-dimensional curl of Aμ.
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3.8 Metric tensor

We have so far been concerned with spaces in which there are points and a notion of
‘nearness’ of points, so that we can take derivatives; and we can also define vectors
and differential forms. But one notion which has been missing is that of the length of
a vector, or (equivalently) the distance between two points. These are additional
concepts, and a new entity is needed to define them. This entity is called the metric
or the metric tensor. A general space endowed with a metric is called a Riemannian
space.

Let us begin by considering the simple case of R2, in which we may define the vectors v
and u . Their Cartesian components may be written

v ¼ ðvx; vyÞ ¼ ðv1; v2Þ; u ¼ ðux; uyÞ ¼ ðu1; u2Þ;
or we may write, in polar coordinates

v ¼ ðvr; vθÞ ¼ ðv1; v2Þ;
and so on. As is well known, from the elementary theory of vectors we define

v2 ¼ v : v ¼ vj j2¼ v2x þ v2y (3:110)

as the (magnitude)2 of the vector (vector field) v at a particular point. This is a scalar
quantity. Similarly u : u and v : u are scalars. So the situation is that we have a vector v (or
two vectors v and u) and we now want to introduce a scalar quantity, its ‘length’ (or the
‘scalar product’ of two vectors), without talking about 1-forms. To do this we introduce a
new geometric object. We write, in some coordinate system,

v : v ¼ v2 ¼ gikv
ivk ¼ g11ðv1Þ2 þ ðg12 þ g21Þv1v2 þ g22ðv2Þ2 (3:111)

and

v : u ¼ gikv
iuk ¼ g11v

1u1 þ g12v
1u2 þ g21v

2u1 þ g22v
2u2; (3:112)

where gik are the components of the metric tensor in this coordinate system. So in Cartesian
coordinates, we have, comparing (3.110) and (3.111), g11 = g22 = 1, g12 = g21 = 0; or, in
matrix form

½Cartesian coordinates� gik ¼ 1 0
0 1

� �
: (3:113)

In addition, the metric tensor is used to express the distance ds between the points (x1, x2)
and (x1 + dx1, x2 + dx2):

ds 2 ¼ gik dxi dxk ; (3:114)

where of course the summation convention is being used (as in (3.112)). The notation
indicates that under a change of coordinates xi → x0i we have
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gi j ! g0 i j ¼ ∂ x m

∂ x0i
∂x n

∂ x 0j
gmn (3:115)

so that v : v, v : u and ds2 are indeed scalars. This suggests that gij transforms as a
0
2

� �
tensor, a rank 2 covariant tensor, a (Cartesian) product of two 1-forms (which is not a 2-
form!). Then in polar coordinates x1 = r, x2 = θ, using (3.113) and writing (x1, x2) = (r, θ) we
have for example

g22 ¼ ∂ x m

∂ θ
∂ x n

∂ θ
gmn ¼ ∂ x

∂ θ

� �2
g11 þ ∂ y

∂ θ

� �2
g22 ¼ r2 cos2θ þ r2 sin2θ ¼ r2;

and similar elementary calculations lead to (dropping the primes)

½polar coordinates� gij ¼ 1 0
0 r2

� �
(3:116)

and hence, from (3.114) ds2 = dr2 + r2 dθ2, as expected.
Since the metric tensor ‘maps’ two vectors into a scalar, it can be represented as the

product of two 1-forms, and we may write

gðu; vÞ ¼ u : v: (3:117)

Writing the basis 1-forms as dx μ and the basis vectors as eν with 〈dx
μ, eν〉= δ

μ
ν (cf. (3.20)),

so that u= u μeμ, we put

g ¼ gμ ν dx μ � dxν: (3:118)

Then

gðu ; vÞ ¼ gμν hdx μ; u λ eλi hdxν; ν�e�i ¼ gμ νu
μ vν ¼ u : v : (3:119)

Note that

gð eμ; eνÞ ¼ gλ �hdx λ; eμi hdx�; eνi¼ gμ ν: (3:120)

Now consider the formula

ds 2 ¼ gμ ν dx μ dxν : (3:121)

Here dx μ is the old-fashioned infinitesimal separation between the two points x μ and
x μ + dx μ; it is not a 1-form. The mathematical language in Equations (3.118) and (3.121)
may be different, but the ultimate content is the same. The line element ds2 represents the
squared length of an infinitesimal displacement ‘dx μ

’ in an unspecified direction; this is the
content of (3.121). Using our upgraded mathematical machinery, we may now express the
displacement dx μ by the vector Δ = dx μ eμ. Then, from (3.119), the metric g contracted
against the vectorial displacement Δ gives

g ðD; DÞ ¼ gμ ν dx μ dxν ¼ ds 2: (3:122)

Thus the content of the two equations is the same; only the language differs slightly. It
should be noted that the symbol ‘⊗’ is often omitted, and then (3.118) is written
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g ¼ gμ ν dx μ dxν: (3:123)

In fact, verging on sloppiness, the above equation is sometimes written8

g ¼ ds2 ¼ ds2 ¼ gμ ν dx μ dxν: (3:124)

3.8.1 Holonomic and anholonomic (coordinate
and non-coordinate) bases

We continue our discussion of holonomic and anholonomic bases in Section 3.2 above by
incorporating the metric tensor. It is most straightforward to illustrate the ideas by consid-
ering the simple case of E3, Euclidean 3-dimensional space, in Cartesian and spherical polar
coordinates. The general form for the metric will be

g ¼ gi k q i � q k : (3:125)

In Cartesian coordinates the basis one-forms are θi= dxi, and with

q 1 ¼ dx1 ¼ dx; q 2 ¼ dx2 ¼ dy; q 3 ¼ dx3 ¼ dz; (3:126)

and

gik ¼
1 0 0

0 1 0

0 0 1

0
B@

1
CA ¼ δik ; (3:127)

we find

g ¼ ds2 ¼ dx � dx þ dy � dy þ dz� dz : (3:128)

The vectors dual to the basis 1-forms (3.126) are

e1 ¼ ∂
∂ x

; e2 ¼ ∂
∂ y

; e3 ¼ ∂
∂ z

; (3:129)

since they clearly obey

hw m; eni ¼ δmn : (3:130)

Now let us turn to spherical polars, in which

ds2 ¼ dr2 þ r2 dθ2 þ r2 sin2θ d�2:

In the language of forms this becomes

ds2 ¼ dr � dr þ r2 dθ � dθ þ r2 sin2θ d�� d� : (3:131)

8 The above remarks owe much to Misner et al. (1973), Box 3.2.

81 3.8 Metric tensor



We now have a choice. In a holonomic (or coordinate) basis we may choose the basis
1-forms as

q1 ¼ dr; q2 ¼ dθ; q3 ¼ d� (3:132)

and then

gik ¼
1 0 0
0 r2 0
0 0 r2 sin2θ

0
@

1
A : (3:133)

The vectors dual to (3.132) are

e1 ¼ ∂
∂r

; e2 ¼ ∂
∂θ

; e3 ¼ ∂
∂�

: (3:134)

In an anholonomic (non-coordinate) basis, on the other hand, we may choose the basis
1-forms to be

q1 ¼ dr; q2 ¼ r dθ; q3 ¼ r sin θ d� (3:135)

with

gik ¼
1 0 0
0 1 0
0 0 1

0
@

1
A: (3:136)

Because gik is the unit matrix bases of this type are commonly called orthonormal bases. The
vectors dual to (3.135) are

e1 ¼ ∂
∂r

; e2 ¼ 1

r

∂
∂θ

; e3 ¼ 1

r sin θ
∂
∂�

: (3:137)

A characteristic of a non-coordinate basis is that the basis vectors typically do not commute.
For example, from (3.137) we have

½e1; e2� f ðr; θ; �Þ ¼ ∂
∂r

1

r

∂f
∂θ

� �
� 1

r

∂
∂θ

∂f
∂r

� �
¼ � 1

r2
∂f
∂r

¼ � 1

r
e2 f ;

½e1; e2� ¼ � 1

r
e2; (3:138)

as in (3.15) above. In a holonomic basis, on the other hand, the basis vectors commute. In
both holonomic and anholonomic bases we have

hw μ; eνi ¼ δμ
ν: (3:139)

The elements gμν are the components of the metric tensor in some coordinate system, and
may, for many purposes, be regarded as being defined by Equation (3.121)

ds2 ¼ gμν dx μ dxν: (3:140)
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Let us now make some observations about gμν. First, we may obviously write

gμν 	 1=2ð gμν þ gνμÞ þ 1=2ð gμν � gνμÞ;
the first term of which is symmetric, and the second antisymmetric, under the interchange μ
↔ ν. The antisymmetric combination makes no contribution to ds2 in (3.140), so we may,
without loss of generality, assume that gμν itself is symmetric:

gμ ν ¼ gν μ: (3:141)

Second, let us observe that, because of the way in which the metric is introduced – see
Equation (3.118) – it has the effect of associating with any vector a one-form. Translated
into more old-fashioned language, it has the effect of associating a contravariant vector V μ

with a covariant one Vμ; the metric tensor gμν may be used to ‘lower the index’ on V μ, and
to define

Vμ ¼ gμν V
ν : (3:142)

Clearly this may repeated any number of times, so upper indices in any tensor may be
lowered:

T λ...�
μ...ν ¼ gλρ . . . g� σ T

ρ... σ μ ... ν: (3:143)

Third, we may define g μν, with upper indices, as the inverse of gμν:

g μν gνρ ¼ δμ
ρ; (3:144)

and it is clear that g μν may be used to raise indices:

U μ ¼ g μ ν Uν: (3:145)

It is a trivial exercise to check that, by virtue of (3.144), if an index of some tensor is raised,
and then lowered again, the same tensor is recovered.

3.8.2 Tensor densities: volume elements

We are concerned with the way in which the components of a geometric object transform on

a change of coordinate system x → x0. For example the components of a
1
1

� �
tensor, T μ

ν,
transform according to

T 0μ
ν ¼ ∂x 0μ

∂x ρ
∂x σ

∂x 0 ν T
ρ
σ: (3:146)

We now wish to generalise this. Define

D ¼ det
∂x μ

∂x 0 ν : (3:147)

For example, in four dimensions
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D ¼

∂x0

∂x 00
∂x0

∂x 01
∂x0

∂x 02
∂x0

∂x 03

∂x1

∂x 00
0 0 0

0 0 0 0

∂x3

∂x 00
0 0 ∂x3

∂x 03

��������������

��������������
: (3:148)

We then define a tensor density of weight w, denoted S μ
ν, (taking again as example the case

of a
1
1

� �
tensor) as an object transforming according to

S0μν ¼ Dw ∂x 0μ

∂x ρ
∂x σ

∂x 0ν S
ρ
σ: (3:149)

Similar definitions hold for tensors of arbitrary rank.9

Now consider the totally antisymmetric Levi-Cività symbol (in four dimensions, but the
generalisation to other dimensions is obvious)

ε�λμν ¼
þ1 if ð�λμνÞ is an even permutation of ð0123Þ;
�1 if ð�λμνÞ is an odd permutation of ð0123Þ;
0 otherwise:

(
(3:150)

This definition is to hold in all coordinate systems: it follows that εκλμν is a tensor density of
weight w= 1. To see this consider a tensor Tκλμν which is completely antisymmetric:

T�λμν ¼ T½�λμν�:

Then

T 0
0123 ¼ ∂x�

∂x00
∂x λ

∂x01
∂x μ

∂x02
∂xν

∂x03
T�λμν:

Every term in the sum on the right hand side above is proportional to T0123; in fact

T 00102030 ¼ DT 0123

(note again that Tκλμν is a tensor, not a tensor density). Now raise the indices on T. It is easily
seen that Tκλμν is also completely antisymmetric in its indices. However,

T 00123 ¼ ∂x 00

∂x�
∂x 01

∂x λ
∂x 02

∂x μ
∂x 03

∂xν
T�λμν ¼ det

∂x 0

∂x
:T 0123 ¼ 1

D
T0123:

(Note: Tκλμν is also a tensor.) Hence Tκλμν and Tκλμν have different values in different
coordinate systems; whereas the Levi-Cività symbol must possess the same value in all
systems. This will follow if we declare εκλμν to be a tensor density of weight w = 1; for then

9 This definition differs from that given by Weinberg (1972) (p. 99); Weinberg would define (3.149) as being the
transformation law for a tensor density of weight −w. Our definition coincides with, for example, that of
Papapetrou (1974), p. 11.

84 Differential geometry I: vectors and differentiation



ε0�λμν ¼ D:
∂x 0�

∂x ρ
∂x 0λ

∂xσ
∂x 0μ

∂xτ
∂x 0ν

∂xζ
ερ σ τ ζ ¼ D: det

∂x 0

∂x
: ε� λ μ ν ¼ ε� λ μ ν :

Hence ε00123 = ε0123 = 1, and so on.
Note that g = det gμν is a scalar density of weight w = 2; we have

gμ0ν0 ¼ ∂x ρ

∂x μ0
∂xσ

∂xν0
gρσ;

hence

g 0 ¼ det
∂x
∂x 0

� �2

g ¼ D2g;

or ffiffiffiffi
g0

p
¼ D

ffiffiffi
g

p
; (3:151)

or, in spaces where g < 0 (for example spaces with the signature of Minkowski space)ffiffiffiffiffiffiffiffi
�g0

p
¼ D

ffiffiffiffiffiffiffi�g
p

: (3:152)

An important application of tensor densities is the notion of volume elements. Let us
show that in an n-dimensional space with basis 1-forms θ1, … , θn, the volume element
(an n-form) is

h ¼
ffiffiffiffiffiffiffi
�g

p
q1 ^ ::: ^ qn : (3:153)

We begin by specialising to 4-dimensional space-time (which, however, is easily general-
isable to n dimensions). Let us lower the indices on εκλμν.

ε� λ μ ν ¼ g�ρ gλσ gμ τ gν ζ ε
ρστζ ¼ g ε�λμν:

Then, defining

dτ¼ d4x ¼ 1

4!
ε�λμν dx� dx λ dx μ dxν (3:154)

we have, under x → x0,

dτ ! dτ 0 ¼ 1
4!

ε0 �λμν
∂x 0�

∂x ρ
∂x 0 λ

∂xσ
∂x 0 μ

∂xτ
∂x 0 ν

∂xζ
dx ρ dxσ dxτ dxζ

¼ 1

4!
det

∂ x0

∂ x
ερ σ τ ζ dx ρ dxσ dxτ dxζ

¼ 1

D
dτ: (3:155)

Hence, in a space with negative signature, (3.152) and (3.155) giveffiffiffiffiffiffiffiffi
�g0

p
dτ0 ¼ ffiffiffiffiffiffiffi�g

p
dτ; (3:156)

and it follows that η in (3.153) above is the invariant volume element.
As a simple illustration consider E3 in spherical polar coordinates. In the holonomic basis

the basis 1-forms are given by (3.132) and the metric by (3.133), giving
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g ¼ r4 sin2θ;
ffiffiffiffi
g

p ¼ r2 sin θ

and

h ¼ r2 sin θ dr ^ dθ ^ d�: (3:157)

In the anholonomic system the basis 1-forms are given by (3.135) and the metric by (3.136),
giving g = 1 and

h ¼ dr ^ ðr dθÞ ^ ðr sin θ d�Þ ¼ r2 sin θ dr ^ dθ ^ d�;

as in the holonomic system – and as expected.

3.9 Absolute differentiation: connection forms

In the previous sections we have set up the language of vectors, forms and tensors. Our next
task is to differentiate them. Suppose a vector has components V μ in some coordinate
system, then the derivative with respect to xν is commonly written

∂V μ

∂ xν
¼ V μ

; ν : (3:158)

This is an object with two indices and one might be inclined to think it is a
1
1

� �
tensor, but

that is wrong. In coordinate systems other than Cartesian ones the coordinate axes them-

selvesmove around when one moves to a different point in the space, and this must be taken
into account for a proper consideration of differentiation. (We must not forget that the field
equations of gravitation are, in the non-relativistic case – and therefore also in the relativistic
case – second order differential equations; see Equations (1.5) and (1.6). It is therefore
crucial to arrive at a correct treatment of differentiation – ultimately differentiation in a
curved space.)

We begin by considering the simple case of a vector field in a 2-dimensional (locally) flat
space E2. In Cartesian coordinates we write

V ¼ Vx ex þ Vy ey ;

and in polar coordinates

V ¼ Vr er þ V� e� :

The basis vectors are sketched in Fig. 3.13. In general we write

V ¼ V i ei ði ¼ 1; 2Þ: (3:159)

As noted above, V is itself invariant under coordinate transformations x→ x0. In a similar
way we may write a 1-form ω as

w ¼ ωi q i; (3:160)
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where θi are the basis 1-forms, for example

qi ¼ ðdx; dyÞ or ðdr; d�Þ
in a holonomic basis, or

qi ¼ ðdr; r d�Þ
in an anholonomic one. The forms dr and d� are sketched in Fig. 3.14. Like V, ω is
coordinate-invariant. Now consider the case of a constant vector field,V = const. ‘Constant’
means that the vector has the same magnitude and direction at all points; and this means that
its Cartesian coordinates are constants, V x, V y= const. The basis vectors ex, ey are constant
over the plane, but it is clear that er, e� are not – their orientation will clearly change as they
move over the plane, as shown in Fig. 3.15. As a consequence, even for constant V, Vr and
V� are not constant; they are the ‘projections’ of a constant vector field over changing basis
directions. In general we may write

riV ¼ riðVm emÞ ¼ ð∂iVmÞ em þ Vmð∂iemÞ ¼ Vm
;i em þ Vm em; i : (3:161)

We call this the absolute derivative of V. In Cartesian coordinates em,i = 0 so a constant V
would imply ∂iV

m= 0; ∂Vx/∂x= 0 and so on. In the general case this is not true, however, and
a constant V gives

0 ¼ riV ¼ Vm
;i em þ Vm em; i (3:162)

and em,i≠ 0 (see Fig. 3.15); equally, of course, Vm,i≠ 0 (m= r, �).

x

ey

er

eφ

ex

y

x

y

(a) (b)

Fig. 3.13 Basis vectors in the plane: (a) ex and ey (b) er and ef.

x

y

dr

dφ

Fig. 3.14 The differential forms dr and df.
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Equation (3.162) represents the derivative of V in a particular direction xi, but this
suggests that we may make an ‘improvement’ to it by multiplying by the basis 1-form θi

(and summing over i). Recall that the 1-form df= (∂i f )θ
i is the derivative of f in an

unspecified direction, while ∂i f is its derivative in the direction xi (in a coordinate basis).
In a similar way, therefore, we define

rV ¼ ðriVÞq i ¼ ðVm
;i em þ Vm em; iÞ q i: (3:163)

This represents the derivative of V in an unspecified direction. We may describe it as a

‘vector-valued one-form’ (to use the term employed by Misner et al. (1973), page 349);

alternatively, it is a
1
1

� �
tensor.

We may actually calculate the quantities em,i, that is er,r, er,� , e�,r and e�,�. We have

x= r cos�, y = r sin�, so in the holonomic basis er ¼ ∂
∂r

; e� ¼ ∂
∂�

and

er ¼ ∂x
∂r

ex þ ∂y
∂r

ey ¼ ðcos�Þex þ ðsin�Þey;
similarly

e� ¼ �ðr sin �Þex þ ðr cos �Þey:
(Note, in passing, that |ex| = |ey| = 1, hence |er| = 1, |e�| = r; e� is not a unit vector.) Then

∂
∂r

er ¼ er; r ¼ ∂
∂r

ðcos� ex þ sin� eyÞ ¼ 0;

∂
∂�

er ¼ er; � ¼ ∂
∂�

ðcos � ex þ sin� eyÞ ¼ � sin� ex þ cos� ey ¼ 1

r
e�:

Similarly

e�; r ¼ 1

r
e�; e�; � ¼ �r er:

We see that em,i are vectors. They may therefore be expressed in terms of the basis vectors er,
e�, so we put

em; i ¼ Gk
m i ek : (3:164)

er

ereφ

eφ

Fig. 3.15 The basis vectors er and ef change orientation as they move over the plane.
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The coefficients Γ k
mi are called the connection coefficients or Christoffel symbols. So in E

2

in polar coordinates, with x1 = r, x2 =�, and in the holonomic basis er ¼ ∂
∂r

; e� ¼ ∂
∂�

, the
above equations give

G 1
11 ¼ G 2

11 ¼ G 1
12 ¼ G 1

21 G 2
22 ¼ 0;

G 2
12 ¼ G 2

21 ¼ 1

r
; G 1

22 ¼ �r:
(3:165)

In the anholonomic basis er ¼ ∂
∂r

; e� ¼ 1

r

∂
∂�

, on the other hand, we have er= cos � ex +

sin� ey and e� =− sin� ex+ cos� ey, from which it is easy to find er,r= 0, er,� = e�, e�,r= 0,

e�;� ¼ 1

r

∂
∂�

ðe�Þ ¼ �er. We adopt the notation that in an anholonomic basis the connection

coefficients are written γikl rather than Γikl so we have, here

γ111 ¼ γ211 ¼ γ112 ¼ γ121 ¼ γ221 ¼ γ222 ¼ 0;

γ212 ¼
1

r
; γ122 ¼ � 1

r
:

(3:166)

Note that the connection coefficients are different in holonomic and anholonomic bases; and
in particular – and this turns out to be a general result – that in a holonomic basis they are
symmetric in the lower indices

G i
km ¼ G i

mk ðholonomic basisÞ; (3:167)

a result which does not in general hold in an anholonomic one, and is evident in (3.166).
Returning to the general case, combining Equations (3.163) and (3.164) gives

rV ¼ ðrμVÞ q μ

¼ ðV ν
;μ eν þ G ν

λ μ V
λ eνÞ q μ

¼ ðV ν
;μ þ G ν

λ μ V
λÞ eν q μ

¼ ðV ν
;μ þ G ν

λ μ V
λÞ eν � q μ; (3:168)

where in the third line the suffices have been relabelled, and in the last line the symbol⊗ has
been inserted for correctness (though we shall generally omit this symbol). A further
definition is commonly made; we put

V μ
;ν ¼ V μ

; ν þ G μ
�ν V

� (3:169)

so that (3.168) may be written

rV ¼ V μ
; ν eμ q ν: (3:170)

This is known as the absolute or covariant derivative of a vector V. In a basis given by eμ
and θν the components of the covariant derivative are V μ

;ν given by (3.169). Yet another
definition is coined:

w�
λ ¼ G�

λ μ q μ (3:171)

is called the connection one-form. It is clear that (3.168) may be written as
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rV ¼ ðdV μ þ w μ
� V

�Þ eμ; (3:172)

in view of (3.171) and the fact that the 1-form dV μ may be written V μ
,ν θ

ν.
Note that the above equations imply that

reμ ¼ w�
μ e� (3:173)

since this will yield

rμeν ¼ hreν; eμi ¼ hw�
ν e�; eμi ¼ G�

ν λ e� hq λ; eμi ¼ G�
ν μ e�

and then

rμV ¼ rμðV λ eλÞ ¼ ð∂μV λÞeλ þ V λðG�
λ μ e�Þ

¼ ðV ν
; μ þ G ν

� μ V
�Þ eν ¼ V ν

; μ eν ¼ hrV; eμi:
This is how differentiation is to be performed on vectors, or, in slightly more old-fashioned
language, on contravariant vectors – Equation (3.169) gives the ‘covariant derivative of a
contravariant vector’. How is differentiation to be performed on 1-forms (or equivalently on
covariant vectors)? This is not difficult to deduce, since it follows from the duality of forms
and vectors.

To begin, let us note that for 0-forms (scalar functions f (x μ)) ∇f simply becomes df:

rf ¼ df ¼ ∂μ f dx μ (3:174)

where dx μ is the basis of 1-forms in a holonomic system. This gives

rμf ¼ ∂μf ¼ f;μ: (3:175)

Turning to 1-forms, what is∇dx μ ? Use Equation (3.173) and the relation (3.27) in the form
〈dx μ, eν〉= δ

μ
ν to give (assuming the Leibnitz rule)

rhdx μ; eνi ¼ 0 ¼ hr dx μ; eνi þ hdx μ; reνi;
hence

hr dx μ; eνi ¼ �hdx μ; w λ
ν eλi ¼ �w λ

νhdx μ; eλi ¼ �w μ
ν: (3:176)

Now put

r dx μ ¼ w~ μ
ν � dxν; (3:177)

a tensor product of 1-forms; that is, a
0
2

� �
tensor, not a 2-form. Then

hr dx μ; eλi ¼ w~ μ
νhdxν; eλi ¼ w~ μ

λ; (3:178)

so from (3.176), (3.178)

w~ μ
ν ¼ �w μ

ν: (3:179)

Then if w~ μ
ν ¼ ~G μ

νλ dx
λ it follows that

~G μ
νλ ¼ �G μ

νλ: (3:180)

90 Differential geometry I: vectors and differentiation



In conclusion, then we have

r dx μ ¼ �w μ
ν � dxν ¼ �G μ

ν λ dx λ � dxν: (3:181)

Operating on 1-forms∇ is equivalent to d so we have, for θμ, the Cartan structure equation

r q μ ¼ dqμ ¼ �w μ
ν ^ qν: (3:182)

Having found the operation of ∇ on the basis 1-forms, it is straightforward to calculate the
effect of ∇ on a general 1-form:

rA ¼ rðAμ dx μÞ ¼ dAμ � dx μ � Aμ w μ
ν � dxν

¼ Aμ;v dxν � dx μ � G λ
νμ Aλ dx μ � dxν

¼ ðAμ; ν � G λ
μ ν AλÞ dx μ � dxν:

Or, with

rA ¼ Aμ;ν dx μ � dxν (3:183)

we have

Aμ;ν ¼ Aμ;ν � G λ
μν Aλ; (3:184)

which is the formula for the absolute or covariant derivative of a covariant vector.

3.9.1 Tensors

What is the general formula for the absolute derivative of a
p
q

� �
tensor? Consider for

definiteness a
2
0

� �
tensor

t ¼ t μ ν eμ � eν: (3:185)

Then

rλ t ¼ rλðt μν eμ � eνÞ
¼ ð∂λt μνÞ eμ � eν þ t μνðrλ eμÞ � eν þ t μνeμ � ðrλeνÞ
¼ ð∂λt μν þ G μ

ρλ t
ρν þ Gν

ρλt
μρÞ eμ � eν

	 t μν;λ eμ � eν;

so that

t μν;λ ¼ t μν;λ þG μ
ρλ t

ρν þ Gν
ρλ t

μρ: (3:186)

It should be clear that the general formula is

T� λ:::
μ ν:::; ρ ¼ T� λ:::

μ ν:::; ρ

þG �
σ ρ T

σ λ:::
μ ν::: þðsimilar term for each upper indexÞ

� G σ
μ ρ T

� λ:::
σ ν::: �ðsimilar term for each lower indexÞ: (3:187)
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Now we have that A =Aμ dx
μ is a 1-form, or a

0
1

� �
tensor, while V =V ν eν is a vector, or a

1
0

� �
tensor, so that ∇V is a

1
1

� �
tensor, and ∇A a

0
2

� �
tensor. The metric tensor g,

however, relates vectors and 1-forms, so is in effect a
0
2

� �
tensor – see Equation (3.118).

Suppose that

A ¼ g ðV ; :::Þ; i:e: Aμ ¼ gμν V
ν (3:188)

and that

rA¼ gðrV; :::Þ; i:e: Aμ ; ρ ¼ gμν V
ν
;ρ: (3:189)

We also have, however (by Leibnitz’s rule),

rA ¼ r ½g ðV; :::Þ� ¼r gðV; :::Þþ gðrV; :::Þ (3:190)

and comparison with (3.189) gives, since V is an arbitrary vector,

r g¼ 0 ) dgμ ν ¼wμ ν þw ν μ ; (3:191)

which is called the metric compatibility condition. In index notation the equations above
become

Aμ;� ¼ðgμ ρ V ρÞ;� ¼ gμ ρ ;� V
ρ þ gμ ρ V

ρ
;�

and comparison with (3.31) gives gμ ρ ; κV
ρ= 0; or, since V μ is an arbitrary vector,

gμ ρ ;� ¼ 0; (3:192)

which is the component version of the metric compatibility condition.
This condition actually enables us to find an expression for the connection coefficients

Γμ
νρ in terms of the metric tensor and its (ordinary) derivatives. Working in a holonomic

basis, in which Γμ
νρ =Γ

μ
ρν, equation (3.192) reads

gμρ;� � G σ
μ� gσρ � Gσ

ρ� gμσ ¼ 0: (i)

Rewriting this equation after a cyclic permutation of the indices μ → ρ → κ → μ gives

gρ�; μ � G σ
ρμ g ρ� � G σ

�μ gρσ ¼ 0; (ii)

and after a further cyclic permutation

g�μ; ρ � G σ
�ρ gσμ � G σ

μρ g�σ ¼ 0: (iii)

Now take the combination (i) + (ii)− (iii). The symmetry of the connection coeffi-
cients in the lower indices means that four of the six terms involving Γ cancel and we
find

gμρ; � þ g ρ�; μ � g�μ; ρ ¼ 2Gσ
μ� gρσ: (3:193)

Multiplying this equation by gρν gives a δνσ on the right hand side, and hence
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Gν
μ� ¼ 1=2 gνρ ðgμρ;� þ g�ρ;μ � gμ�;ρÞ: (3:194)

This is the promised formula for the connection coefficients. Its use will be illustrated below.

3.10 Parallel transport

The treatment of absolute (‘covariant’) differentiation above is rather formal and also differs
from the historical approach, which was more pictorial and in which the notion of parallel
transport played an important part. We now give an outline of the older conception of
covariant differentiation, which has the virtue of visualisability. This will involve some
repetition of results already obtained, but also gives a more rounded understanding.

Consider the derivative of a vector
∂Vμ

∂xv
. We denote it, as in (3.158) above, by

∂Vμ

∂xν
	 ∂νVμ 	 Vμ; ν: (3:158)

This object has two indices, which might seduce us into believing it is a rank
0
2

� �
tensor. Is

it? Under the coordinate transformation x μ → x0μ we have, from (3.38),

Vμ ! V 0
μðxÞ¼ ∂x ρ

∂x 0μ
ðxÞVρðxÞ;

hence

∂V 0
μ

∂x 0ν
¼ ∂

∂x 0ν
∂x ρ

∂x 0μ
Vρ

	 

¼ ∂x ρ

∂x 0μ
∂xσ

∂x 0ν
∂Vρ

∂xσ
þ ∂2x ρ

∂x 0ν∂x 0μ
Vρ;

or, using the notation (3.158),

V 0
μ; ν ¼ ∂x ρ

∂x 0μ
∂xσ

∂x 0ν
Vρ;σ þ ∂2x ρ

∂x 0ν∂x 0μ
Vρ: (3:195)

This is not the transformation law for a tensor. The first term on the right hand side is
tensorial, but the second term spoils the tensorial character: the differential of a vector is not

a tensor. This is clearly seen to be a consequence of the fact that the transformation ‘matrix’
∂xρ

∂x 0μ
is, for non-linear transformations, a function of the coordinate x, so the second

derivative is non-vanishing. The point is that a tensor is a geometric object whose existence
is independent of coordinate systems. If it is non-zero in one coordinate system it is non-zero
in all. For linear transformations (e.g. x0μ=x μ+ αμνx

ν, α = const) the second term in (3.195)
vanishes so if Vμ,ν is non-zero in one coordinate system it is indeed non-zero in all. But for
non-linear transformations this is not true ; Vμ,ν could be zero in one coordinate system but
not in another one. And recall that non-linear transformations (for example accelerations)
play a central role in General Relativity because they mimic gravitational fields.

This non-tensorial nature of the derivative Vμ,ν is a fundamental problem. How do we
solve it? How may we define a genuine tensor which is related to the derivative of a vector?
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We may identify the source of the problem by looking at the very definition of differ-
entiation: we have a vector field V(x), which has the value V(x) at the point x, and the value
V(x+ dx) =V + dV at the point x+ dx, as shown in Fig. 3.16. Then dV is the difference
between two vectors at different points, and this is not a vector – it was noted above that
the difference between two vectors at the same point is a vector, since the transformation

coefficients
∂x 0μ

∂x λ
ðxÞ are the same, but this condition clearly ceases to hold now.

Schematically we may write

∂V
∂x

¼ lim
dV
dx

; (3:196)

the limit being taken as dx→ 0. Then dV is not a vector, but dx is a vector, so the ratio of them
is not a tensor, exactly as in (3.195) above. We may give a simple illustration of this.
Consider a constant vector in the plane (a flat space). This is illustrated in Fig. 3.17 by a
vector V at one point and a vector W at another point, and V and W are parallel, V || W. In
Cartesian coordinates this means that Vx=Wx, Vy =Wy, so Vi =Wi, or

ðCartesian coordinatesÞ ðVi � WiÞ ¼ 0: (3:197)

In polar coordinates, on the other hand, as is clear from Fig. 3.17, Vr≠Wr, Vθ≠Wθ, hence
Vi≠Wi, or

V(x) = V V(x + dx) = V + dV

Fig. 3.16 A vector field V(x) at the points x and x + dx.

x

y

V

W

Fig. 3.17 The vectors V and W are parallel; their Cartesian components are equal but their polar

coordinates are clearly different.
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ðpolar coordinatessÞ ðVi � WiÞ 6¼ 0: (3:198)

We see that the difference between the vectorsVandW is zero in one system but non-zero in
another. It therefore cannot be a vector, which by definition has the homogeneous trans-
formation law (3.38): if all components of V are zero in one frame, they are zero in all
frames. We see the force of the observation in (3.196); dV, being the difference between two
vectors at two different points, is not a vector.

To construct a derivative which is a genuine tensor we must take the difference between
two vectors at the same point. So at the point x+ dx we consider two vectors; one is the
vector V + dV, as in Fig. 3.16. The other is a vector constructed at x+ dxwhich is parallel to V
at x. It is denoted V+ δV; this is shown in Fig. 3.18. The vectors V and V+ δV are like the
vectors VandW in Fig. 3.17, and V+ δV is said to be obtained by parallel transport from x to
x + dx. We have then

V μðxÞþ dV μ ¼V μ ðx þ dxÞ vector field at x þ dx;

V μðxÞþ δV μ vector at xþ dx parallel transported from x: (3:199)

V+ δV is by definition a vector at the point x+ dxwhich has the same Cartesian components
as V does at x. So in a Cartesian coordinate system δV μ= 0, but it is not zero in general. The
quantity δV is not a vector, but V μ(x) + δV μ is a vector at x + dx. We now have two vectors at
x + dx, as in (3.199), and the difference between them is a genuine vector, which we denote
DV and define thus:

DV μ ¼ðV μ þ dV μÞ � ðV μ δV μÞ¼ dV μ � δV μ: (3:200)

As a conceptual scheme this is fine, but how do we write δV μ? It is highly reasonable to
suppose that it is proportional to dx and also to V, so we write

δV μ ¼ �G μ
λν V

λ dxν; (3:201)

and the coefficient Γμ
λν is the Christoffel symbol, or connection coefficient, already intro-

duced. (The term ‘connection coefficient’ comes about because this quantity connects the
value of a vector field at one point with the value at another. It amounts to an additional
structure possessed by the space.) Equations (3.200) and (3.201) give

DV μ ¼ dV μ þG μ
λν V

λ dxν

so the ‘true’ derivative – the tensorial derivative – of V is

x

V V + δ V
V + dV

x + dx

Fig. 3.18 Two vector fields are defined at the point x + dx; V + dV is parallel to V.
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DV μ

dxν
¼ ∂V μ

∂xν
þG μ

λν V
λ: (3:202a)

In an extension of the notation in Equation (3.158) this equation is commonly written

V μ
; ν ¼V μ

; ν þG μ
λν V

λ; (3:202b)

as in (3.169) above. This is the covariant derivative of a contravariant vector. To find the
covariant derivative of a covariant vector Wμ note simply that under parallel transport the
scalar product V μ Wμ must be unchanged,

δ ðV μ WμÞ ¼ 0;

hence (δV μ)Wμ+V μ(δWμ) = 0, and therefore

V μ δWμ ¼ � Wμ δV
μ ¼G μ

λν Wμ V
λ dxν ¼G λ

μν Wλ dxν V μ;

where Equation (3.201) has been used, and in the last step a relabelling λ ↔ μ. The vector
field V μ is however arbitrary, so this implies that

δWμ ¼G λ
μ ν Wλ dxν:

This equation parallels Equation (3.201) for a contravariant vector. The covariant derivative
of Wμ follows from an analogous argument to that involving V μ, so that finally

DWμ

dxν
¼ ∂Wμ

∂ xν
� G λ

μν Wλ; (3:203a)

or, in alternative notation,

Wμ;ν ¼Wμ;ν � G λ
μν Wλ; (3:203b)

as in (3.184) above.
As we have already noted, the connection coefficients Γλ

μν do not transform as
the components of a tensor under general coordinate transformations. Their transfor-
mation law is shown below – Equation (3.207) – but from that law it will be seen that the
quantity

T ρ
μ ν ¼ G ρ

μ ν �G ρ
ν μ; (3:204)

does indeed transform as a tensor, since the final term in (3.207), which is symmetric
in μ and ν, will drop away in the transformation law of T ρ

μν, leaving only the homo-
geneous term on the right hand side, and thus demonstrating the tensorial nature. The
quantity T ρ

μν is called the torsion tensor. In General Relativity it is generally assumed
that space-time is torsion-free, so the connection coefficients are symmetric in their lower
indices

G ρ
μ ν ¼G ρ

ν μ; (3:205)

in a coordinate basis.
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3.11 Some relations involving connection coefficients

In the expressions for covariant derivatives, (3.202) and (3.203), we have seen that the left
hand sides, V μ

;ν andWμ;ν, are tensors, while the ordinary derivatives, V
μ
,ν andWμ,ν are not.

This is equivalent to the observation that Γλ
μν is not a tensor, as we have seen from its

definition. We may ask: how does Γλ
μν transform under a coordinate transformation?

Consider Equation (3.203b). Both Wμ;ν and Wμ are tensors; under the transformation
x μ → x0μ we have

W 0
μ;ν ¼ ∂x ρ

∂x 0 μ
∂xσ

∂x 0 ν
Wρ;σ; W 0

λ ¼ ∂xτ

∂x 0λ
Wτ :

In the x0 coordinate system we will have

W 0
μ; ν ¼W 0

μ;ν � G0λ
μν W

0
λ;

where

W 0
μ; ν ¼ ∂

∂x 0ν
∂xτ

∂x 0μ
Wτ

	 

¼ ∂2xτ

∂x 0ν∂x 0μ
Wτ þ ∂xτ

∂x 0μ
Wτ; ρ

∂x ρ

∂x 0ν
:

Hence

∂x ρ

∂x 0 μ
∂xσ

∂x 0 ν
Wρ; σ ¼ ∂2x τ

∂x 0 ν∂x 0 μ
Wτ þ ∂xτ

∂x 0 μ
∂x ρ

∂x 0 ν
Wτ;ρ � G0λ

μν
∂x τ

∂x 0 λ
Wτ: (3:206)

Substituting for Wτ,ρ from (3.203b) gives

∂x ρ

∂x 0 μ
∂xσ

∂x0 ν
Wρ; σ ¼ ∂2x τ

∂x0 ν∂x 0 μ
Wτ þ ∂xτ

∂x 0 μ
∂x ρ

∂x0 ν
Wτ; ρ þ ∂x τ

∂x0 μ
∂x ρ

∂x 0 ν
Gα

τρ Wα

� �0λ
μν

∂xτ

∂x 0λ
Wτ :

The left hand side of this equation is the same as the second term on the right, so with a bit of
relabelling we have

G0λ
μν

∂x τ

∂x0 λ
Wτ ¼ ∂x σ

∂x0 μ
∂x ρ

∂x0 ν
Gτ

σρ þ ∂2x τ

∂x0 μ∂x 0 ν

� �
Wτ:

Since Wτ is an arbitrary vector this is an identity in its coefficients, and on multiplying by
∂x 0�

∂xτ
we find

G0�
μν ¼ ∂ x 0�

∂xτ
∂xσ

∂x 0 μ
∂x ρ

∂x 0 ν
Gτ

σρ þ ∂x 0�

∂xτ
∂2xτ

∂x 0 ν∂x 0 μ
: (3:207)

This is the transformation law for the connection coefficients Γλ
μν. The first term on the right

of (3.207) is tensorial (homogeneous), while the second term spoils the tensorial nature –
entirely as expected.
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It is also true, and is not difficult to show, that an equivalent transformation law is
(Problem 3.2)

G0 λ
μν ¼ ∂x 0λ

∂xτ
∂xσ

∂x 0 μ
∂x ρ

∂x0 ν
Gτ

σρ � ∂xσ

∂x 0 μ
∂x ρ

∂x 0 ν
∂2x 0 λ

∂x ρ ∂xσ
: (3:208)

For future purposes it is useful to find an expression for the contracted quantity Γμ
κμ. The

definition

Gν
μ� ¼ 1=2 gνρðgμρ; � þ g�ρ; μ � gμ� ; ρÞ (3:194)

involves gνρ, the ‘inverse’ of gνρ. Put

Δνρ ¼ minor of gνρ;

then

gvp ¼ 1

g
Δv p

where g is the determinant of gνρ. On differentiation,

dg ¼ ðdgvρÞΔvρ ¼ ðdgvρÞ g gvρ: (3:209)

In words, this equation means: dg is the differential of the determinant g made up from the
components of the metric tensor gνρ. It can be obtained by taking the differential of each
component of gνρ and multiplying it by its coefficient in the determinant, i.e. by the minor
Δνρ. This equation implies that

∂λg ¼ g g μνð∂λgμ νÞ: (3:210)

Now

∂λ ln g ¼ 1

g
∂λg

and hence

∂λ ln
ffiffiffi
g

p ¼ 1ffiffiffi
g

p ð∂λ ffiffiffi
g

p Þ ¼ 1

2g
∂λg;

and equally, when the metric is of negative signature,

∂λ ln
ffiffiffiffiffiffiffi�g

p ¼ 1

2g
∂λg: (3:211)

From (3.194) we have

G μ
λμ ¼ 1=2 g μν∂λ gμν;

and (3.210) and (3.211) then give

G μ
λμ ¼ 1

2g

∂g
∂x λ

¼ ∂ðln ffiffiffiffiffiffiffi�g
p Þ
∂x λ

: (3:212)
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3.11.1 Derivatives of scalar and tensor densities

Tensor densities were defined in (3.149) above. Here we shall only be concerned with
densities of weight w= 1, so a scalar density Q transforms under x μ → x0μ as

Q ! Q0 ¼ QD; D ¼ det
∂x
∂x0

; (3:213)

and a tensor density, for example Tμν, as

Tμν ! T 0
μν ¼ D

∂x�

∂x 0μ
∂x λ

∂x 0v
T�λ: (3:214)

The derivatives of these quantities do not transform in the same way, so as usual we want to
construct ‘covariant’ derivatives. Differentiating (3.213) with respect to x0μ gives

∂Q0

∂x 0μ
¼ ∂Q

∂xv
∂xv

∂x 0μ
Dþ Q

∂D
∂x 0μ

: (3:215)

It is the second term – and also the presence of D in the first term – which prevents Q,μ from
being a covariant vector. To proceed, we find an expression for ∂D/∂x0μ in the last term.
Recall that for any matrix aκλ with determinant a we have

a ¼ a�λΔ
λ
� (3:216)

where Δλ
κ is the minor of aκλ. Then (in analogy with (3.209) above)

∂a
∂x 0μ

¼ ∂
∂x 0μ

ða�λÞ :Δ λ
�:

Now put

a�λ ¼ ∂x�

∂x 0λ
) a ¼ D; (3:217)

and then

∂D
∂x 0μ

¼ ∂2x�

∂x 0λ ∂x 0μ
Δ λ

�: (3:218)

We now need to find an expression for Δλ
κ: note that, as well as (3.216) we also have

a�λΔ
λ
μ ¼ δ�μa:

Then, from (3.217)

∂x�

∂x 0λ
Δ λ

μ ¼ δ�μ D:

Multiplying by ∂x0ν/∂xκ gives

Δv
μ ¼ ∂x 0 v

∂x μ
D;
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which, when substituted into (3.218) gives

∂D
∂x 0 μ

¼ ∂2x�

∂x 0 λ ∂x 0 μ
∂x 0 λ

∂x�
D: (3:219)

It is this term which appears in (3.215). It is convenient, however, to find another expression
for it. Putting κ= ν in (3.207) gives

G0�
μ� ¼ ∂xσ

∂x 0 μ
G ρ

σρ þ ∂x 0�

∂xτ
∂2xτ

∂x 0� ∂x 0 μ

or

∂x 0�

∂xτ
∂2xτ

∂x 0� ∂x 0 μ
¼ G0�

μ� � ∂xσ

∂x 0 μ
G ρ

σ ρ

so (3.219) becomes

∂D
∂x 0μ

¼ G0�
μ� � ∂xσ

∂x 0μ
G ρ

σρ

	 

D: (3:220)

Substituting this into (3.215) gives

∂Q0

∂x 0μ
¼ ∂Q

∂xv
∂xv

∂x 0μ
Dþ Q G0�

μ� � ∂xσ

∂x0μ
G ρ

σρ

	 

D

¼ ∂Q
∂xv

∂xv

∂x 0μ
Dþ Q0G0�

μ� � Q
∂xσ

∂x 0μ
G ρ

σρD

or

∂Q0

∂x 0 μ
� Q0G0�

μ� ¼ ∂xv

∂x 0 μ
∂Q
∂xv

� QG�
�v

	 

D: (3:221)

Hence
∂Q0

∂x 0ν
� QG�

�ν is a covariant vector density. We may call it the covariant derivative of

a scalar density:

Q;v ¼ Q;v � G�
�v Q; (3:222)

and then (3.221) is

Q0
; μ ¼

∂xv

∂x 0μ
Q ;v D: (3:223)

This definition of a covariant vector density parallels that of a scalar density, Equation
(3.149) above.

The definition of the covariant derivative of a tensor density follows the same lines: if Tμν
is the density in (3.214) above, its covariant derivative is

Tμv;ρ ¼ Tμv;ρ � G�
μρT�v � G�

vρTμ� � Gα
αρTμv; (3:224)

with analogous definitions for tensor densities of any rank: the crucial last term is always the
same.
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3.11.2 Note on torsion and curvature

We have been concerned with the absolute derivative operator∇. Its component in a direction

eμ is∇μ. Now ordinary derivative operators commute:
∂2f

∂x μ ∂xν
¼ ∂2f

∂xν ∂x μ
; or

½∂μ; ∂ν�f ¼ 0;

where f is any scalar field. Do absolute derivative operators commute? There are two
separate questions: whether the commutators acting on a scalar field, or on a vector field,
give zero:

ð1Þ rμ rν f ¼? rν rμ f ; (3:225)

ð2Þ rμ rν V¼? rν rμ V: (3:226)

The difference between ordinary and absolute derivative operators is that the latter depend
also on the frame vectors eμ, so it is to be expected that the above questions are actually
questions about the space being considered. The answers to the questions are, in fact, that the
commutator acting on a scalar field always vanishes,

ð1Þ ½rμ; rν� f ¼ 0 always (3:227)

whereas if the commutator acting on a vector field vanishes, the space has no curvature, i.e.
is flat:

ð2Þ ½rμ; rν� V ¼ 0 ) space has no curvature ðis flatÞ: (3:228)

The whole spirit of General Relativity, of course, is that space-time is curved, so [∇μ,∇ν ]
V≠ 0; more will be said about this below. However, in conventional General Relativity
(Einstein’s theory) space-time is supposed to have zero torsion. There are in existence
theories of space-time with torsion, and these have particular consequences for particles
with spin, for example spin ½ particles in a gravitational field (described by the Dirac
equation) – see Section 11.4 below for some more information on this. Theories with torsion
were also used in some early versions of unified field theories, for example the Einstein–
Strauss theory.10

These theories lie outside ‘mainstream’ General Relativity, so let us here investigate the
consequences of zero torsion. The torsion tensor is given by (3.204) above and a space-time
with zero torsion is therefore characterised by

G ρ
μ ν ¼G ρ

ν μ; (3:229)

as in (3.205); the connection coefficients, calculated in a coordinate basis, are symmetric in
their lower indices.

10 Einstein & Straus (1946); see also Schrödinger (1985).
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In terms of forms the no torsion condition is

w μ
ν ^ dxv ¼ 0; (3:230)

since this gives (see (3.171) and put θν= dxν)

w μ
ν ^ dxv ¼ G μ

ν� dx� ^ dxν ¼ 0;

and since the wedge product is antisymmetric in ν and κ this implies that Γμ
ν κ is symmetric

in its lower indices, which is condition (3.229).
In the general case, in which the basis θμ is not necessarily holonomic, we define the

torsion two-form

S μ ¼ dq μ þ w μ
� ^ q�: (3:231)

Space is torsion-free if Σμ= 0. This is the content of (3.182), which in a coordinate basis
θμ = dx μ gives dθ μ= 0 and (3.231) becomes the condition (3.230).

3.12 Examples

Let us illustrate the methods above by considering the simple cases of the Euclidean plane
E2 and the 2-sphere S2 – flat and curved 2-dimensional spaces. The equations we shall need
are (3.125) and (3.124), involving the metric tensor

g ¼ gμ νq μ � qν; (3:125)

ds2 ¼ gμ ν dx μ dxν; (3:124)

and, for the connection 1-forms, (3.173) and (3.182),

reμ ¼ w�
μ e�; (3:173)

d q μ ¼ �w μ
ν ^ qν; (3:182)

the last of which is the zero torsion condition. The connection coefficients Γκλμ are defined
by (3.171)

w�
λ ¼ G�

λμ q μ; w�
λ ¼ γ�λμ q

μ; (3:171)

for coordinate and non-coordinate bases respectively. In a coordinate basis these are given
by (3.194)

Gν
μ� ¼ 1=2gνρðgμρ; � þ g�ρ;μ � gμ�; ρÞ: (3:194)

The metric compatibility condition is (3.191)

rg ¼ 0: (3:191)
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From (3.125) we have

rg ¼ ðdgμνÞ q μ qν þ gμνð�w μ
� q�Þ qν þ gμνq μð�wν

� q�Þ
¼ ðdgμν � w�

μ g�ν � w�
ν gμ�Þ q μ qν;

so (3.191) gives

d gμν ¼ wμν þ wνμ; (3:232)

where

wμν 	 gμ �w�
ν: (3:233)

3.12.1 Plane E2: coordinate basis

In polar coordinates

ds2 ¼ dr2 þ r2 d�2 (3:234)

and the coordinate basis 1-forms are

q1 ¼ dr; q2 ¼ d�; (3:235)

with corresponding basis vectors

e1 ¼ ∂
∂r

; e2 ¼ ∂
∂�

:

The metric tensor has components g11 = 1, g22 = r
2, g12 = g21 = 0, or in matrix form (using

Latin rather than Greek indices in this 2-dimensional example)

gik ¼
1 0

0 r2

� �
gik ¼

1 0

0
1

r2

 !
: (3:236)

Equation (3.232), the metric compatibility condition, yields

μ ¼ 1; ν ¼ 2 : w12 ¼ �w21; (A)

μ ¼ ν ¼ 1 : w11 ¼ 0 ) w1
1 ¼ 0; (B)

μ ¼ ν ¼ 2 : w22 ¼ r dr ¼ r q1 ) w2
2 ¼ 1

r
q1: (C)

Equations (B) and (C) give (with (3.171))

G1
11 ¼ G1

12 ¼ 0; G2
21 ¼ 1

r
; G2

22 ¼ 0: (3:237)

The zero torsion condition (3.182) gives:

μ ¼ 1: w1
� ^ q� ¼ 0

;w1
2 ^ q¼ 0 ) w1

2 / q2 ¼ d�:
(D)
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μ ¼ 2 : w2
1 ^ dr þ w2

2 ^ d� ¼ 0: (E)

By virtue of (C), Equation (E) gives

w2
1 ^ dr ¼ � 1

r
dr ^ d� ¼ 1

r
d� ^ dr ) w2

1 ¼ 1

r
d� ¼ 1

r
q2: (F)

(F) clearly gives

G2
11 ¼ 0; G2

12 ¼ 1

r
¼ G2

21: (3:238)

(F) also gives ω21 = g22ω
2
1 = r d�, whence (A) gives ω12 =− r d� and hence

w1
2 ¼ g11 w12 ¼ �r d� ¼ �r q2;

which yields

G1
21 ¼ 0 ¼ G1

12; G1
22 ¼ �r: (3:239)

Equations (3.237)–(3.239) agree with (3.165) above; and also with (3.194): for example

G1
22 ¼ 1=2 g1kðg2k; 2 þ g2k; 2 � g22; kÞ ¼ 1=2 g11ð�g22; 1Þ ¼ �1=2

∂
∂r

ðr2Þ ¼ �r:

It is left as a (useful) exercise to check the other connection coefficients.
So far we have worked in the polar coordinate system. Let us briefly dispose of the

plane in Cartesian coordinates. Here ds2 = dx2 + dy2 so taking x1 = x, x2 = y the metric
tensor is

gi k ¼ 1 0
0 1

� �
; gik ¼ 1 0

0 1

� �
;

and since its values are constants, the connection coefficients, given by (3.194), which
depend on the derivatives of the metric tensor, will all be zero:

Gi
km ¼ 0:

The same conclusion follows from the equations involving the connection forms. Equation
(3.232) clearly gives

w11 ¼ w22 ¼ 0; w12 ¼ �w21:

With θ1 = dx, θ2 = dy, Equation (3.227) with μ= 1 gives

w1
2 ^ q2 ¼ 0;

implying that ω1
2∝ dy and hence ω2

1∝ dy. With μ = 2, however, Equation (3.182)
gives

w2
1 ^ q2 ¼ 0;

and hence ω2
1 ~ dx, in contradiction with the above. We conclude that ω2

1 = 0; and thence
that all the connection forms – and therefore all the connection coefficients – vanish.
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Let us now calculate the connection coefficients in an orthonormal basis.We still have the
line element (3.234) but choose the basis 1-forms to be

q1 ¼ dr; q2 ¼ r d�; (3:240)

so that the metric tensor is

gi k ¼ 1 0
0 1

� �
¼ gi k ; (3:241)

an orthonormal basis. Then dgik= 0 and, from (3.228) ωik=−ωki, so that ω11 =ω22 = 0 =
ω1

1 =ω
2
2 , and ω12 =− ω21 is the only connection form to be found. The connection

coefficients, denoted γikm in an anholonomic basis, are defined by (3.171)

wi
k ¼ γik mq

m;

and we then have

γ111 ¼ γ112 ¼ 0; γ221 ¼ γ222 ¼ 0: (3:242)

The zero torsion condition dθi+ω i
k∧ θ k = 0 gives

i ¼ 1 : w1
2 ^ r d� ¼ 0 ) w1

2 
 d�;

i ¼ 2 : dr ^ d�þ w2
1 ^ dr ¼ 0 ) w2

1 ¼ d� ¼ 1

r
q2;

w1
2 ¼ �d� ¼ � 1

r
q2

and hence

γ211 ¼ 0; γ212 ¼
1

r
; γ121 ¼ 0; γ122 ¼ � 1

r
: (3:243)

Equations (3.242), (3.243) are in agreement with (3.166). Note, comparing these with
Equations (3.238)–(3.239), that γikm ≠ Γikm; the connection coefficients are different in
holonomic and anholonomic systems. And in particular Γikm is symmetric, Γikm =Γ

i
mk,

whereas γikm is not: for example γ212≠ 0, but γ221 = 0.

3.12.2 Sphere S2

The metric for a 2-sphere of radius a is

ds2 ¼ a2ðdθ2 þ sin2θ d�2Þ: (3:244)

In a coordinate basis θ1 = dθ, θ2 = d� and the metric tensor and its inverse are

gi k ¼ a2 0
0 a2 sin2θ

� �
; gi k ¼

1

a2
0

0
1

a2 sin2θ

0
B@

1
CA:
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Now consider the zero torsion equation (3.182),

d qi þ wi
k ^ qk ¼ 0:

It yields

i ¼ 1: w1
1 ^ dθ þ w1

2 ^ d� ¼ 0; (A)

i ¼ 2 : w2
1 ^ dθ þ w2

2 ^ d� ¼ 0: (B)

The metric compatibility condition

dgik ¼ wik þ wki

yields

i ¼ k ¼ 1: w11 ¼ 0; (C)

i ¼ 1; k ¼ 2 : w21 ¼ �w12; (D)

i ¼ k ¼ 2 : w22 ¼ a2 sin θ cos θ dθ ) w2
2 ¼ cot θ dθ ¼ cot θ q1: (E)

Equation (C) gives

G1
11 ¼ G1

12 ¼ 0; (3:245)

while (E) gives

G2
21 ¼ cot θ; G2

22 ¼ 0: (3:246)

(B) and (E) give ω2
1 = cot θ d� = cot θ θ2, hence

G2
11 ¼ 0; G2

12 ¼ cot θ; (3:247)

On the other hand, fromω2
1 = cot θ d�we deduce thatω1

2 =− sin θ cos θ d�=− sin θ cos θ
θ2, and hence

G1
21 ¼ 0; G1

22 ¼ � sin θ cos θ: (3:248)

These values of the connection coefficients agree with Equation (3.194); for example

G2
22 ¼ 1=2g1mð2g2m;2 � g22;mÞ ¼ �1=2g11 g22;1

¼� 1

2a2
∂
∂θ

ða2 sin2θÞ ¼ � sin θ cos θ:

Now perform the calculation in an orthonormal basis. We have

ds2 ¼ ðq1Þ2 þ ðq2Þ2

with

q1 ¼ a dθ; q2 ¼ a sin θ d�; gi j ¼ 1 0
0 1

� �
:
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Equation (3.182) gives

i ¼ 1: w1
2 ^ a sin θ d� ¼ 0 ) w1

2 
 d�;

i ¼ 2 : a cos θ dθ ^ d�þ w2
1 ^ ða dθÞ ¼ 0 ) w2

1 ¼ cos θ d�; (3:248a)

and these two equations are consistent. Then (3.171) gives

γ211 ¼
1

a
cot θ ¼ �γ122; others ¼ 0: (3:249)

Again, as in the case of the plane, the connection coefficients differ in coordinate and non-
coordinate bases. The general formula for them in a coordinate basis is (3.194). Is there a
general formula in a non-coordinate basis? Indeed there is, and we now derive it.

3.13 General formula for connection coefficients

The zero torsion condition is dθκ=− ωκ
λ ∧ θλ. This is a 2-form, and the basis of 2-forms is

θμ ∧ θν so we may put

dq� ¼ �1=2C�
μ νq μ ^ qν (3:250)

where Cκ
μν=− Cκ

νμ are some coefficients. Then

1=2C�
μ νq μ ^ qν ¼ w�

λ ^ q λ ¼ γ�λ μq
μ ^ q λ

¼ 1=2ðγ�λ μ � γ�μ λÞ q μ ^ q λ

¼ 1=2ðγ�ν μ � γ�μ νÞ q μ ^ qν;

on relabelling, from which

C�
μ ν ¼ γ�ν μ � γ�μ ν: (3:251)

Now let us lower the indices. Define

C� λ μ 	 g� ρ C
ρ
λ μ; γ� λ μ 	 g� ρ γ

ρ
λ μ: (3:252)

Then (3.251) is

C� λ μ ¼ γ� μ λ � γ� λ μ: (a)

Now cyclically permute the indices κ → λ → μ → κ to give

Cλ μ� ¼ γλ� μ � γλ μ�; (b)

and permuting them once more gives

Cμ� λ ¼ γμ λ� � γμ� λ: (c)

Taking Equations (a) + (b)− (c) we find

C� λμ þ Cλμ� � Cμ� λ ¼ ðγ� μ λ þ γμ� λÞ � ðγλ μ� þ γμ λ�Þ
þ ðγλ� μ þ γ�� μÞ � 2γ� λ μ:

(3:253)
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Now use the metric compatibility condition

dgμ ν ¼ wμ ν þ wν μ; (3:254)

the left hand side vanishing, of course, in an orthonormal system. In a coordinate basis

dgμ ν ¼ ∂λgμν dx λ ¼ gμ ν; λ dx λ; (3:255)

while in a non-coordinate basis

dgμν ¼ eλðgμνÞ q λ; (3:256)

for example in the non-coordinate basis (3.240) above, e2 ¼ 1

r

∂
∂�

. Then in the general case

eλðgμνÞ q λ ¼ wμ ν þ wν μ ¼ ðγμ ν λ þ γν μ λÞ q λ;

so that

eλðgμ νÞ ¼ γμ ν λ þ γν μ λ: (3:257)

Substituting this equation into (3.253) (more precisely, the three terms in brackets on the
right) gives

γμ ν λ ¼ 1=2 ½eλðgμ νÞ þ eνðgλ μÞ � eμðeλ νÞ � Cμ ν λ � Cν λ μ þ Cλ μ ν�: (3:258)

This is the general formula. In a coordinate (holonomic) basis eλ(gμν) → gμν,λ and Cλμν = 0
(since dθμ= 0), so we recover (with γ → Γ and the first index lowered – see (3.252)) the
formula (3.194). In an orthonormal basis (gμν= δμν, up to signs ± for Lorentzian signature),
however, eλ(gμν) = 0 so

γμ ν λ ¼ �1=2½Cμ ν λ þ Cν λ μ � Cλ μ ν�: (3:259)

We illustrate this by returning to the calculation above, of E2 in an anholonomic basis. The
metric and basis forms are given by (3.234) and (3.240) and ei (gkm) = 0. The constants Cikm

are found from (3.250)

dqi ¼ �1=2Ci
kmqk ^ qm:

This gives, with (3.240) and i= 1:

dq1 ¼ 0 ¼ �1=2C1
kmqk ^ qm ¼ �C1

12 q1 ^ q2;

hence

C1
12 ¼ C1

21 ¼ 0 ) C112 ¼ C121 ¼ 0; (3:260)

and with i= 2:

dq2 ¼ dr ^ d� ¼ �1=2C2
kmqk ^ qm ¼ �C2

12q1 ^ q2 ¼ �r C2
12 dr ^ d�;

hence

C2
12 ¼ � 1

r
; C2

21 ¼ 1

r
) C212 ¼ � 1

r
; C221 ¼ 1

r
: (3:261)
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Then (3.259) gives

γ122 ¼ �1=2 ðC122 þ C221 � C212Þ ¼ � 1

r
;

(since C122≡ 0; any Cλκμ = 0 if κ= μ) and

γ212 ¼ �1=2 ðC212 þ C122 � C221Þ ¼ 1

r
:

The remaining γikm are all zero. For example

γ211 ¼ �1=2 ðC211 þ C112 � C121Þ ¼ 0:

We then conclude that the only non-zero components of γikm are

γ122 ¼ � 1

r
; γ212 ¼

1

r
;

as was found in (3.243) above. It is not an accident that the quantities Ci
jk appearing in

(3.250) have the same form as the structure constants (3.15) in the Lie algebra of the basis
vectors. In fact they are the same quantities, so that corresponding to the formula (3.250),

dq� ¼ �1=2Ck
μ ν q μ ^ qν;

we also have a corresponding formula in the dual vector space

½e�; eλ� ¼ C μ
� λ eμ: (3:262)

For example, for E2 in the anholonomic basis above

½e1; e2� ¼ ∂
∂r

;
1

r

∂
∂�

� �
¼ � 1

r2
∂
∂�

¼ � 1

r
e2;

and hence

C2
12 ¼ � 1

r
; C2

21 ¼ 1

r
; others ¼ 0;

i.e.

C212 ¼ � 1

r
; C221 ¼ 1

r
; others ¼ 0;

as in (3.261) above. This is an alternative, and sometimes rather quicker, method of finding
Cκλμ. Clearly, in a holonomic basis eκ= ∂/∂x

κ, so all Cκ
λμ=0, as noted before. The proof of

(3.262) is long and slightly involved and the interested reader is referred to ‘Further reading’.
In this chapter we have devoted much attention to connection coefficients. We have seen

that a flat space, for example E2, allows a Cartesian coordinate system to be set up throughout,
and in this case the connection coefficients are all zero, but in any other coordinate system they
will not all vanish. In a curved space, on the other hand, for example S2, the connection
coefficients are not all zero. So if we are presented with a metric tensor for some space and
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calculate the connection coefficients, to find that some of them are not zero, we shall not know
whether the space is flat or curved. This is basically because the connection coefficients are not
tensors: if the space happens to be flat theywill all vanish in a Cartesian coordinate system, but
it does not follow that they will vanish in another coordinate system.

It is important in General Relativity to know whether a space-time is flat or curved,
because this corresponds to the presence or absence of a gravitational field. To tell if a space
is really curved we need first to define a test of curvature, and then from this to arrive at a
tensor – a ‘curvature tensor’. If this is non-zero in one coordinate system it is non-zero in all,
so the space is curved. This is the subject of the next chapter.

Further reading

Good general references for this chapter, written in a style relatively accessible to physicists,
areMisner et al. (1973), Frankel (1979) and Schutz (1980).More sophisticated accounts are to
be found in a large number of texts, each with its own emphasis and point of view (and some
written for a purely mathematical readership): Choquet-Bruhat (1968), Hawking & Ellis
(1973), Eguchi et al. (1980), Choquet-Bruhat et al. (1982), Crampin & Pirani (1986), De
Felice & Clarke (1990), Nakahara (1990), Martin (1991), Frankel (1997) and Cartan (2001).

Avery enlightening account of the modelling of space-time as a differentiable manifold is
to be found in Kopczyński & Trautman (1992); see also Schröder (2002). A good, and for
many years the standard, reference on differential forms for physicists is Flanders (1989).
Westenholtz (1978) also provides a useful and quite complete account. Accounts written for
more mathematically inclined readers are Cartan (1971) and Schreiber (1977). Introductions
to homology, cohomology and de Rham’s theorem may be found in Misner (1964),
Choquet-Bruhat (1968), Flanders (1989) and Frankel (1997). An old but highly authorita-
tive and very readable account of parallel transport is to be found in Levi-Cività (1927), and
a nice potted history appears in Martin (1991), Section 6.3.

Problems

3.1 By differentiating the equation

gi jgj k ¼ δik

with respect to xl, show that

∂gim

∂xl
¼ �gmk gi j

∂gj k
∂xl

and hence that

∂gim

∂xl
þ gi jGm

j l þ gm jGi
j l ¼ 0:

Hence show that gij;k= 0.
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3.2 By differentiating the equation

∂x 0λ

∂x ρ
∂x ρ

∂x 0 ν
¼ δ λ

ν

with respect to x0μ, and using Equation (3.207), show that

G0λ
μ ν ¼ ∂x 0λ

∂x ρ
∂xσ

∂x 0μ
∂xτ

∂x 0ν
G ρ

στ � ∂xσ

∂x 0μ
∂x ρ

∂x 0ν
∂2x 0λ

∂x ρ ∂xσ
:

3.3 Calculate the connection coefficients Γijk in E3 (Euclidean 3-dimensional space) in
spherical polar coordinates.

3.4 Consider the sphere S2 in the orthonormal basis θ1 = a dθ, θ2 = a sinθ d�. Calculate the
structure constants Ci

jk from the Lie algebra (3.262) generated by the vectors ei dual to
θi and thence show that ω2

1 = cosθ d�, as in Section 3.12.2.
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4 Differential geometry II: geodesics
and curvature

We continue our account of differential geometry by discussing the topics of geodesics and
curvature.

4.1 Autoparallel curves and geodesics

In the last chapter we defined the notion of the absolute derivative of a vector in an
unspecified direction

Δ

V ¼ V �
;λ dx λ � e� (4:1)

where Vκ
;λ=Vκ

,λ+ Γκμλ V
μ (in a holonomic basis). The derivative of V in the direction U is

Δ
UV ¼ h Δ

V;Ui ¼ V�
;λU

λ e�: (4:2)

If U = eμ we may write this as

Δ

μV ¼ Vk
;μ e�: (4:3)

We now use this to define the notion of parallel transport along a curve – this is a refinement
of what was discussed in Section 3.10 above. Let C be some curve in Rn. We may
parametrise this curve by λ, so the curve is the mapping R → Rn, λ → C(λ). Let t be the
tangent vector to the curve at some point with coordinates xμ (see Fig. 4.1):

t ¼ t μeμ; t μ ¼ dx μ

dλ
: (4:4)

IfV is a vector field defined in Rn, and therefore in particular at each point on C, we define it
to be parallel transported along C if

Δ

tV ¼ t� V λ
;� eλ ¼ t�ðV λ

;� þ G λ
μ�V

μÞ eλ ¼ 0: (4:5)

Consider for simplicity flat space. The statement that two vectors (of equal magnitude, let us
say) are ‘parallel’means that their Cartesian components are equal. If, then, a vector (field)
V is defined to be parallel along a curve, its Cartesian components are unchanged, so
dVx

dλ
¼ dVy

dλ
¼ 0, but

d
dλ

¼ t μ∂μ, hence
∂Vx

∂x
¼ ∂Vx

∂y
¼ � � � ¼ 0, and the first term, V λ,κ, in

the bracket in (4.5) vanishes. But in a Cartesian system all Γλμκ= 0, hence

Δ

tV = 0
in Cartesian coordinates. But this is a tensor equation, and so defines – at least in flat



spaces – parallelism (parallel transport) in any coordinate system. Note, by the way, that the
polar components of two parallel vectors are of course not equal, but equally the connection
coefficients Γλμκ are not all zero in a non-Cartesian coordinate system – the absolute
derivative will still vanish. Equation (4.5) defines parallelism along a curve.

It is convenient to note a couple of points. First, returning to the case of flat space briefly, if C
is an arbitary curve, tangent vectors are not parallel-transported into tangent vectors – Fig. 4.2
illustrates this simple point. This continues to hold in general (curved) spaces, so a special subset
of curves exists, which have the property that tangent vectors are parallel transported into
tangent vectors. These are called autoparallel curves, and are treated below. The second remark
is that in the definition (4.5) the vector field t is defined only along C, not over the whole space.
To be more precise over this, we need to establish the existence of a vector fieldY (say), which
when restricted toC gives the tangent vector t, and then show that

Δ

YV is independent ofY, apart
from its restriction to C(λ). This is discussed, for example, in Helgason (1978).

It follows from the definition above that the scalar product (inner product) of two vectors
U, V is preserved under parallel transport,

ΔðU:VÞ ¼ 0: (4:6)

This follows from the definition U ·V= g(U, V) = gμνU
μVν, where

g ¼ g� λθ
� � θ λ; hence

Δ

g ¼ g� λ;μθ
� � θ λ � θ μ ¼ 0;

whence (4.6) follows.

V

V

V

C

Fig. 4.2 The vector field V is parallel to itself along the curve C; it is a tangent to C at one point but not at

others, hence tangent vectors are not parallel transported along the curve.

V

t
C

Fig. 4.1 A curve C on which is defined a vector field V, and t is a tangent vector at any point.
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4.1.1 Autoparallel curves

A curve C is defined to be autoparallel if the tangent vector t is transported along it by
parallel transport

Δ

tt ¼ 0: (4:7)

In a flat space an autoparallel curve is a straight line – it is only along straight lines that
tangent vectors at different points are parallel to each other – see Fig. 4.1 above. In curved
spaces there are no straight lines, so we may describe an autoparallel curve as the straightest
path (between two points). From (4.5)

Δ

tt ¼ tνt μ; ν eμ; (4:8)

so (4.7) gives tν tμ;ν= 0, or

tνðt μ;ν þ G μ
ρ νt

ρÞ ¼ 0;

which, with t μ ¼ dx μ

dλ
gives

dxν

dλ
∂
∂xν

�dx μ
dλ

�
þ G μ

ρ ν
dx ρ

dλ

#
¼ 0;

"

that is,

d2x μ

dλ2
þ G μ

ν ρ
dxν

dλ
dx ρ

dλ
¼ 0: (4:9)

This is the equation for an autoparallel curve. Our next task is to show that in a metric space
it is also the equation for a geodesic.

4.1.2 Geodesics

In a flat space, the straight line joining two points has two properties: (i) it is the ‘straightest’
path – tangent vectors at different points are parallel, (ii) it is the shortest path between the
two points. This second property of course involves the notion of distance, i.e. gμν. In a
general space the straightest path becomes an autoparallel curve (and exists even in an
affine space), while the shortest path becomes a geodesic, whose equation we shall now
derive.

The length of arc between the two points xμ and xμ+ dxμ is ds, where

ds2 ¼ gμν dx μ dxν;

so the length of arc between P and Q (see Fig. 4.3) is

s ¼
ðQ
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνðxÞ dx μ dxν

q
: (4:10)
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Let us parametrise the curve by λ, xμ(λ), with the end points P(λ1), Q(λ2). For example, in

space-time λ could be proper time. Putting _x μ ¼ dx μ

dλ
, we have

s ¼
ðλ2
λ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνðxÞ _x μ _xν dλ

q
; (4:11)

or

s ¼
ðλ2
λ1

ffiffiffi
L

p
dλ; L ¼ Lðx μ; _x μÞ ¼ gμ νðxÞ _x μ _xν; (4:12)

and L may be termed a ‘Lagrangian’.
Now suppose the curve is deformed, so that xμ(λ)→ xμ(λ) + δxμ(λ) (see Fig. 4.4), but with

δxμ(λ1) = δx
μ(λ2) = 0, so that the end-points are fixed.

A geodesic is a path of extremal length (in general minimal), so under this deformation or
variation we would have δ ∫ds = 0. It is more convenient, however, to take instead δ ∫ds2 = 0,
which is, with L in (4.12)

δ
ð
L dλ ¼ 0: (4:13)

then ð
∂L
∂_x μ

δ _x μ þ ∂L
∂x μ

δx μ
� �

dλ ¼ 0; (4:14)

where δ _x μ ¼ d
dλ

δx μ. Now note that the following integral I is zero:

I ¼
ðQ
P

d
dλ

∂L
∂ _x μ

δx μ
� �

dλ ¼ ∂L
∂ _x μ

δx μjQP ¼ 0:

On the other hand

I ¼
ð

d
dλ

∂L
∂ _x μ

� �
δx μ þ ∂L

∂ _x μ
δ _x μ

� �
dλ;

P

Q

x μ(λ)

Fig. 4.3 A parametrised curve between points P and Q.
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hence ð
∂L
∂ _x μ

δ _x μ dλ ¼ �
ð
d
dλ

∂L
∂ _x μ

� �
δx μ dλ: (4:15)

Substituting this in (4.14) givesð
L�1=2 ∂L

∂x μ
� d
dλ

∂L
∂ _x μ

� �� �
δx μ dλ ¼ 0;

and since δxμ is arbitrary this implies

∂L
∂x μ

� d
dλ

∂L
∂ _x μ

� �
¼ 0: (4:16)

This is the Euler–Lagrange equation for the geodesic, where

Lðx; _xÞ ¼ g� λðxÞ _x � _x λ: (4:17)

It is clear that

∂L
∂x μ

¼ g� λ; μ _x � _x λ;
∂L
∂ _x μ

¼ 2gμ� _x�

and hence

d
dλ

∂L
∂ _x μ

� �
¼ 2

d
dλ

ðgμ� _x�Þ ¼ 2gμ�; λ _x
� _x λ þ 2 gμ� €x

�;

so that (4.16) gives

g�λ; μ _x
� _x λ � 2gμ�; λ _x

� _x λ � 2 g μ�€x
� ¼ 0:

Multiplying by gμρ this gives

€xρ þ g μρgμ�;λ _x
� _x λ � 1=2g μρg�λ;μ _x

� _x λ ¼ 0:

P

Q

x μ + δx μ(λ)

Fig. 4.4 A curve deformed, but with the end-points P and Q fixed.
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The gμκ,λ in the second term may, however, be replaced by 1=2 (gμκ,λ + gμλ,κ) since _x � _x λ is
symmetric under κ↔ λ interchange, so its coefficient may be replaced by its symmetric part
only. This then gives

€xρ þ 1=2gρμðgμ�; λ þ gμλ; � � g � λ; μÞ _x� _x λ ¼ 0;

or, in view of (3.194),

€xρ þ G ρ
� λ _x

� _x λ ¼ 0: (4:18)

This is the equation for a geodesic, and we see it is the same as (4.9), the equation for an
autoparallel curve. Hence it is true, in a general space as well as in a flat one, that the
straightest path between two points is also the shortest one. We now consider some
examples of geodesics.

4.1.3 Examples

The first example is almost trivial – the plane in Cartesian coordinates. Here ds2 = dx2 + dy2,
g11 = g22 = 0, g12 = g21 = 0, so all Γikm = 0 and the geodesic equations become (with s the
parameter along the path)

d2x
ds2

¼ d2y
ds2

¼ 0;

whose solutions are x= as + c1, y = bs+ c2 (a, b, c1, c2 constants), hence y =mx+ c, a
straight line.

For a second example consider the plane in polar coordinates. Here ds2 = dr2 + r 2 d�2, and
the connection coefficients are given by (3.237), (3.239) (with, of course, x1 = r, x2 =�), so
the geodesic equations for ρ = 1, 2 are

d2r
ds2

� r
d�
ds

� �2

¼ 0; (i)

d2�
ds2

þ 2

r

dr
ds

d�
ds

¼ 0: (ii)

We must verify that these equations describe straight lines. If
d�
ds

¼ 0, then � = const and

from (i) r= as + b; this is a straight line through the origin. Otherwise, if
d�
ds

¼ �0 6¼ 0, divide

(ii) by � 0:

1

�0
d�0

ds
þ 2

r

dr
ds

¼ 0:

On integration this yields

‘n j�0j þ ‘n r2 ¼ 0 ) r2�0 ¼ r2
d�
ds

¼ h ¼ const: (iii)
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Dividing the equation for the metric by ds2 and using (iii) gives

1 ¼ dr
ds

� �2
þ r2

d�
ds

� �2
¼ dr

ds

� �2
þ h2

r2

and hence

dr
ds

¼ � 1

r
ðr2 � h2Þ1=2: (iv)

On the other hand (iii) gives

d�
ds

¼ h

r2
: (v)

Dividing equations (iv) and (v) gives

d�
dr

¼ � h

rðr2 � h2Þ1=2
¼ � d

dr
cos�1 h

r

� �

and hence

�� �0 ¼ � cos�1 h

r
) h

r
¼ cosð�� �0Þ;

which is the equation of a straight line in polar coordinates – see for example Fig. 4.5.
Our third example of a geodesic is the sphere S2. We shall prove that a geodesic on a

sphere is a great circle, that is, the intersection of a plane through the origin of the sphere and
the spherical surface. The metric is

ds2 ¼ a2 dθ2 þ a2 sin2 θ d�2;

and with x1 = θ, x2 =� we have, from (3.245)–(3.248)

G2
21 ¼ G2

12 ¼ cot θ; G1
22 ¼ �sin θ cos θ:

The geodesic equation with μ= 2 is then

€�þ 2 cot θ €� _θ ¼ 0;

h

φ 0
φ

r
P (r,φ)

h
r = cos(φ – φ 0)

Fig. 4.5 A straight line in polar coordinates.
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(with _� ¼ d�
ds

, etc.) On integration this gives

sin2θ: _� ¼ h ¼ const ) _� ¼ h

sin2θ
: (a)

From the equation for the metric we have

1 ¼ a2 _θ 2 þ a2 sin2θ _�2;

which, on substituting from (a) gives

_θ ¼ sin2θ � a2h2
	 
1=2

a sin θ
: (b)

Dividing (a) and (b) gives

_�
_θ
¼ d�

dθ
¼ h cosec2θ

1

a2 � h2 cosec2θ

� �1=2
;

which on integration gives

�� �0 ¼ �cos�1 h cot θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a2
� h2

r
0
BB@

1
CCA;

i.e.

cosð�� �0Þ þ h cot θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a2
� h2

r ¼ 0;

which is an equation of the form

A cos�þ B sin�þ C cot θ ¼ 0;

which, in turn, is of the form αx + βy + γz = 0, where

x ¼ A sin θ cos�; y ¼ A sin θ sin�; z ¼ A cos θ:

It thus represents a plane section of the sphere through the origin, i.e. a great circle. This is
what we set out to prove.

4.2 Geodesic coordinates

Consider a point P on a geodesic. A nearby point has the coordinates xμ(s), where s is the arc
length from P (see Fig. 4.6). Now expand xμ(s) about xμP by Taylor’s theorem:
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x μðsÞ ¼ x μP þ _x μP sþ 1=2€x μP s
2 þ 1

6
x
... μ

P s
3 þOðs4Þ: (4:19)

The point xμ(s), is, however, on the geodesic, so

€x μ þ G μ
ν � _x

ν _x� ¼ 0 (4:20)

hence

€x μP ¼ �ðG μ
ν�ÞP vν v�; νν ¼ _xνP:

To find x
... μ

P, differentiate (4.20):

x
... μ þ _G

μ
ν� _x

ν _x� þ 2G μ
ν�€x

ν _x� ¼ 0:

Now putting _G
μ
ν� ¼ G μ

ν�;λ _x λ, substituting from (4.20) for €xν and relabelling gives

x
... μ ¼ ð�G μ

� λ; ρ þ 2G μ
α�Gα

ρ λÞ _x� _x λ _x ρ
¼ Sym½�G μ

� λ; ρ þ 2G μ
α�Gα

ρ λ� _x� _x λ _x ρ
� Λ μ

� λ ρ _x
� _x λ _x ρ; (4:21)

where ‘Sym’means taking the part of the object in brackets which is symmetric with respect
to the indices κ, λ and ρ. We then have

:::
x μρ ¼ ðΛ μ

� λ ρÞPv �v λv ρ

and hence, substituting in (4.19),

x μðsÞ ¼ x μP þ v μs � 1=2ðG μ
ν �ÞPvνv �s2 þ

1

6
ðΛ μ

� λ ρÞPv�v λv ρs3 þOðs4Þ; (4:22)

with νμ ¼ _x μP. Having obtained this expansion we now define geodesic coordinates y μ by
the equation

x μ ¼ x μP þ y μ � 1=2ðG μ
ν�ÞPvνv�s2 þ

1

6
ðΛ μ

� λ ρÞPv �v λv ρs3 þOðs4Þ;

so that

P

x μ(s)

Fig. 4.6 Points on a geodesic; s is the arc length from the point P.
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v μs� y μ þOðs4Þ ¼ 0;

or

y μ ¼ νμsþOðs4Þ; (4:23)

so that _y μP ¼ ν μ ¼ _x μP. Comparing Equations (4.21) and (4.22) we see that, in geodesic
coordinates,

ðG μ
ν�ÞP ¼ 0; (4:24)

and that (Λμ
κ λ ρ)P= 0, or equivalently that

ðG μ
� λ; ρÞP þ ðG μ

ρ�; λÞP þ ðG μ
λ ρ; �ÞP ¼ 0: (4:25)

The condition (4.24) requires (gμν,κ)P= 0, but (4.25) is too weak to require that the first
derivative of the connection coefficients vanish, or (what is the same) that the second
derivative of the metric tensor vanish at P. We therefore have, in geodesic coordinates

ðgμ ν; �ÞP ¼ 0; but ðgμ ν; � ρÞP 6¼ 0; (4:26)

or, equivalently,

ðG μ
ν�ÞP ¼ 0; but ðG μ

ν �; ρÞP 6¼ 0: (4:27)

Thus the first derivative of the metric tensor vanishes at P, but not nearby. This implies that,
at P, gμν= const, corresponding to Minkowski (pseudo-Euclidean) space, and therefore to a
locally inertial frame. This is the significance of geodesic coordinates; they determine a
coordinate system which is locally Minkowski.

4.3 Curvature

Everyone would consider themselves to have an intuitive understanding of curvature – for
example, that of a curved surface, but the task of the mathematician is to formulate a
definition of it. This is done by pursuing the considerations already begun in Section 3.10
on parallelism and parallel transport. Consider the question; when are two vectors at two
distinct points parallel? In Euclidean space two vectors are said to be parallel if their
Cartesian components are the same. In curved spaces, what do we say? Consider the
sketches in Fig. 4.7. In (a), a flat space, it is clear whether the vectors U and V are parallel
or not. (As drawn, they are.) In (b) the space is a cylinder, which may be unrolled to make it
into a plane. It then becomes case (a), so that it is clear whether U and V are parallel. A
cylinder is said to be a ‘developable surface’. A cone is also developable. In some sense they
are not ‘truly’ curved, since they may be unrolled to be made flat. A sphere S2, on the other
hand, is not developable – it cannot be made flat without stretching or tearing. Then the
question, whetherU is parallel toV, now becomes a matter of definition. Figure 4.7(c) shows
both U and V as east-pointing (tangent) vectors on the equator, at opposite sides of the
sphere. The equator is a geodesic and we saw above that under parallel transport a tangent
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vector to a geodesic remains a tangent vector, so under parallel transport along the equatorV
becomes the same as U, so they are parallel by definition.

Consider, however, an alternative route over which to transport V to the point whereU is,
that is the route over the north pole N. Since V is initially perpendicular to this path, it
remains perpendicular to it (since the angle between a vector and the tangent vector to the
geodesic is preserved under parallel transport), so when V arrives at the equator on the far
side of the sphere it is pointing due west. Are we then obliged to say that V is still parallel to
U? Is there a contradiction? There is no contradiction. What is happening is precisely an
indication that the surface is curved, and that on a curved surface parallel transport is not
integrable.

Consider for example (Fig. 4.8) the parallel transport of V round the closed path PNQRP.
The vector starts out as Vi at P (east pointing) and when it arrives at Q, via N, it is west
pointing. It remains west pointing along the equator from Q to P, so that the final specimen
Vf has been rotated through π from its orientation as Vi: Vf≠Vi. (Actually, the angle of
rotation, π in this case, is also the solid angle subtended by the area enclosed by the path at
the origin; this is a general result.) Parallelism, defined in this way, is not integrable. Instead,

V

U
V

V

V

U
U

(a) (b) (c)

N

Fig. 4.7 Vectors V and U (a) in a flat space, (b) on the surface of a cylinder, (c) on the surface of a sphere.

Vi

Vf

Q

R

N

P

Fig. 4.8 An vector Vi is parallel transported along the path PNQRP, finishing as the vector Vf.
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δV=Vf−Vi gives a measure of the curvature of the path enclosed. We now investigate this
matter more thoroughly.

4.3.1 Round trips by parallel transport

Consider, as shown in Fig. 4.9, the general case of the parallel transport of the vector V μ

round the closed loop ABCDA on a (2-dimensional) surface, where the lines AB etc. are not
necessarily geodesics. Under parallel transport in the direction U we have

Δ

UV ¼ V �
;λ U

λ e� ¼ ðV �
;λ þ G�

μ λ V
μÞU λ e� ¼ 0;

hence, with U λ= δx λ,

δV � ¼ �G�
λ μ V

λδ x μ: (4:28)

So, going from A to B

V �ðBÞ � ½V �ðAÞ�i ¼ �
ð
x2¼b

G�
λ μ V

λ dx μ ¼ �
ð
x2¼b

G�
λ 1V

λ dx1;

where the subscript i denotes initial. Similarly, over the paths B to C, C to D and finally D
back to A,

V �ðCÞ � V �ðBÞ� ¼ �
ð
x1¼aþδa

G�
λ 2V

λ dx2;

V �ðDÞ � V �ðCÞ ¼ þ
ð
x2¼bþδb

G�
λ1 V

λ dx1;

½V �ðAÞ�f � V � ðDÞ ¼ þ
ð
x1¼a

G�
λ2 V

λ dx2;

Vi
Vf

A

B

C

D

x  2 = b

x  2 = b + δb

x  1 = a + δa

x  1  = a

Fig. 4.9 Parallel transport of a vector along the closed path ABCDA.
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where f denotes final. Adding these four equations gives

½V �ðAÞ�f � ½V �ðAÞ�i
¼ �

ð
x1¼aþδa

þ
ð
x1¼a

� �
G�

λ2 V
λ dx2 þ

ð
x2¼bþδb

�
ð
x2¼b

� �
G�

λ1 V
λ dx1

�
ð
ð�δaÞ∂1ðG�

λ 2 V
λÞ dx2 þ

ð
ðδbÞ∂2 ðG�

λ 1 V
λÞ dx1

� δa δb �∂1ðG�
λ 2V

λÞ þ ∂2ðG�
λ 1 V

λÞ� �
¼ δa δb ð�G�

λ 2; 1 þ G�
λ 1; 2ÞÞV λ � G�

λ 2ðV λ
;1Þ þ G�

λ 1ðV λ
;2Þ

� �
:

The last two terms, involving the derivatives of V λ, may be approximated by substituting
from (4.28), giving

ΔV � � δa δb ½G �
λ 1; 2 � G�

λ 2;1Þ þ G�
μ2 G μ

λ 1 � G�
μ 1 G μ

λ 2�V λ: (4:29)

Writing δa δb as δx1 δx2 and observing that the quantity in square brackets is antisymmetric
under 1 ↔ 2, (4.29) may be written more generally as

ΔV � ¼ 1=2 δx μ δxν ½G�
λ μ; ν � G�

λ ν;μ þ G�
ρ ν G ρ

λ μ � G�
ρ μ G ρ

λ ν� V λ;

or

ΔV � ¼ 1=2R �
λ μ ν V

λ ΔAν μ; (4:30)

where ΔAνμ is the area enclosed by the path and

R�
λ μ ν ¼ G�

λ ν; μ � G�
λ μ; ν þ G�

ρ μ G ρ
λ ν � G�

ρ ν G ρ
λ μ (4:31)

is the Riemann–Christoffel (or simply Riemann) curvature tensor.1 The fact that (unlike the
connection coefficients) Rκλμν is actually a tensor follows from the quotient theorem: every other
term in (4.30) is a tensor, so Rκλμν also is. It will be appreciated that this tensor is a property of the
manifold itself, since it depends only on the connection coefficients and their derivatives. It tells us
whether a space is curved or not, and since the connection coefficients depend only on the metric
tensorgμν and its first order derivatives, the Riemann tensor also depends only on themetric tensor
and its (first and second order) derivatives. Given the metric, the curvature follows.2

It need hardly be emphasised that this point is a high point in our study of gravity, since we
saw in Chapter 1 that in Einstein’s view gravity was to be described as a curvature of space-
time.We now know how to describe that curvature, so a very significant mile-stone has been
reached. There is, however, still some work required to appreciate exactly how curvature is
to be incorporated into Einstein’s theory. This will emerge in due course; but it is

1 Some books define the Riemann–Christoffel tensor with an overall minus sign relative to this one; unfortunately
there is no general agreement. Our convention agrees with that of Landau & Lifshitz (1971), Misner et al. (1973),
Stephani (1982, 2004), and Rindler (2001). It differs by a minus sign from that of Weinberg (1972).

2 It should be noted that this reasoning concerns a path on a surface, implicitly embedded in R3, a flat space of one
higher dimension. In considering space-time, however, we would need to talk about a surface embedded in a
4-dimensional (or, in general, an n-dimensional, space, spanned by geodesics. This can indeed be done; the
student is referred to the literature for details.
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nevertheless worth reflecting on the significance of the point we have reached. After rather a
long slog we have reached something like the summit ridge of a mountain. At present the
view is not all that great but as we wander along the ridge the clouds will disperse and we
shall be rewarded with more spectacular views.

Before broaching the next topic it is convenient to note that all the above manipulations
were carried out in a holonomic (coordinate) basis. In an anholonomic basis the formula for
the Riemann tensor is

R�
λ μ ν ¼ γ�λ ν; μ � γ�λ μ; ν þ γ� ρ μ γ

ρ
λ ν � γ�ρ ν γ

ρ
λ μ � C ρ

μ ν γ
�
ρ λ: (4:32)

This formula will be derived below (Eq. (4.50)).

4.4 Symmetries of the Riemann tensor

We shall now study some properties of the Riemann tensor, given by (4.30), as defining
curvature in space-time. It should therefore be emphasised once more that the results above,
derived in the 2-dimensional case, also hold in n dimensions. Since the Riemann tensor is of
rank 4, it has 44 = 256 components in 4-dimensional space-time, but not all of them are
independent. For example, it follows from the definition (4.31) that

R�
λ μ ν ¼ �R�

λ ν μ

so that of the 16 combinations of the last two indices, 4 are zero and only 6 are independent.
The curvature tensor possesses other symmetries in addition, but to examine them more

fully it is more convenient firstly to consider the completely covariant rank
0

4

� �� �
tensor

Rκλμν=gκρR
ρ
λμν, and secondly to work in the geodesic coordinate system at the given point.

From (4.27) this means that, in this system

R�
λ μ ν ¼ G�

λ ν; μ � G�
λ μ;ν:

From (3.194) and (4.26) we have, in addition,

G�
λ ν; μ ¼ 1=2 g� ρðgρ λ; ν μ þ gρ ν; λ μ � gλ ν; ρ μÞ;

so that finally

R� λ μ ν ¼ 1=2 ðg� μ; λ ν � g� ν; λ μ þ gλ ν; � μ � gλ μ; � νÞ: (4:33)

This has the immediately verifiable properties

R� λ μ ν ¼ �R� λ ν μ ðiÞ
R� λ μ ν ¼ �R λ� μ ν ðiiÞ
R� λ μ ν ¼ þRμ ν� λ ðiiiÞ

3R�½ λ μ ν� ¼ R� λ μ ν þ R� μ ν λ þ R�ν λ μ ¼ 0: ðivÞ

(4:34)
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How many independent components does this leave Rκλμν with (in 4-dimensional space-
time)? Condition (i) means that antisymmetry in the last two indices implies that there are
only 4× 3/2 = 6 independent combinations of these. Condition (ii) means that the same is
true of the first pair of indices. Then writing

R� λ μ ν ¼ RAB

where A refers to the first pair and B to the second pair of indices, condition (iii) means that
RAB=RBA, so we have what we could regard as a symmetric 6× 6 matrix, which will
therefore have 6× 7/2 = 21 linearly independent components. Thus of the 256 components
of Rκλμν, conditions (i)–(iii) imply that only 21 are independent (and many, of course, are
zero). Equation (iv) imposes only one extra constraint; it is easy to check that
Rλ[κμν] =−Rκ[λμν] and similarly for the other indices (up to an overall sign), so no new
information is added to (iv). We conclude that Rκλμν has only 20 (linearly) independent
components.3 (Although this conclusion was reached by making use of the geodesic
coordinate system, it will be appreciated that the result holds in general.)

4.5 Ricci tensor and curvature scalar

Two other quantities related to the Riemann tensor play an important part in General
Relativity. The Ricci tensor Rμν is defined by

Rμν ¼ R ρ
μρν ¼ gρ σ Rσμρν; (4:35)

it amounts to taking the ‘trace’ of the Riemann tensor on the first and third indices. It is a
0

2

� �
tensor which is also symmetric

Rνμ ¼ g ρσ Rσνρμ ¼ gσ ρ Rσμρν ¼ Rμν; (4:36)

where (4.34 iii) above has been used (as well as the symmetry of the metric tensor). The
Ricci tensor Rμν therefore has 10 independent components in space-time.

The curvature scalar or Ricci scalar R is the contraction of the Ricci tensor with the
(contravariant) metric tensor:

R ¼ g μν Rμν: (4:37)

It is obviously a scalar, and therefore the same in all coordinate systems – unlike Rμν and
Rκ

λμν. We now give some 2-dimensional examples of the calculation of curvature.

4.5.1 Plane and sphere: holonomic basis

As usual, in these 2-dimensional examples we use Latin indices. Ri
klm has only one

component (see Footnote 3 above), which we may take to be R1
212. The Ricci tensor has

3 In n dimensions the number of independent components of the Riemann tensor is n2(n2− 1)/12; see for example
Weinberg (1972), pp. 142–3.
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three components: R11, R12 =R21, R22. We illustrate the foregoing formulae by calculating
Ri

klm, Rik and R in the cases of E2 and S2, in holonomic and anholonomic bases. We shall
indeed find that E2 is flat, and S2 is curved.

We begin with the plane in polar coordinates, ds2 = dr2 + r2 dθ2, in the coordinate basis
x1 = r, x2 =� (alternatively θ1 = dr, θ2 = d�), and from Equations (3.237)–(3.239) we have,
for the connection coefficients

G 1
11 ¼ G 1

12 G 1
21 ¼ G 2

11 ¼ G2
22 ¼ 0; G 2

12 ¼ G 2
21 ¼ 1

r
; G 1

22 ¼ � r:

Hence, from (4.31)

R1
212 ¼ G1

22; 1 � G1
21; 2 þ G1

i 1Gi
22 � G 1

i2Gi
21

¼ ∂
∂r

ð� rÞ � G1
21G2

21 ¼ �1 � ð�1Þ ¼ 0: (4:38)

Hence the space is flat, and of course

Ri k ¼ 0; R ¼ 0:

The sphere S2 has metric ds2 = a2 (dθ2 + sin2θ d�2) and in the holonomic basis θ1 = dθ,
θ2 = d� the connection coefficients are, from (3.245)–(3.248),

G1
11 ¼ G1

12 ¼ G1
21 ¼ 0; G1

22 ¼ �sin θ cos θ;

G2
11 ¼ G2

22 ¼ 0; G2
12 ¼ G2

21 ¼ cot θ

then

R1
212 ¼ G1

22; 1 � G1
21; 2 þ G1

i 1 Gi
22 � G1

i2Gi
21

¼ ∂
∂θ

ð�sin θ cos θÞ � G1
22G2

21 ¼ sin2θ: (4:39)

This is non-zero, hence the space is curved. At the north and south poles, sin2θ= 0, but this is
not an intrinsic feature; it depends on the coordinate system, and since the sphere is a
homogeneous space the north and south poles may be chosen anywhere.

The components of the Ricci tensor are

R11 ¼ Ri
1i1 ¼ R2

121 ¼ g22R2121 ¼ g22g11R
1
212 ¼ 1

a2 sin2θ
: a2 � sin2θ ¼ 1;

R22 ¼ Ri
2i2 ¼ R1

212 ¼ sin2θ; R12 ¼ Ri
1 i 2 ¼ 0;

(4:40)

and the curvature scalar is

R ¼ g11R11 þ g22R22 ¼ 1

a2
þ 1

a2
þ 2

a2
: (4:41)

It is this last quantity which gives a measure of the curvature of the space, which is
independent of the coordinate system. Shortly below we shall calculate the above tensors
for S2 in an anholonomic system; we expect that the Riemann and Ricci tensors will be
different from (4.38) and (4.39), but the curvature scalar should again be 2/a2. It is worth
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remarking that the curvature scalar decreases as the radius a increases – in accord with
intuition.

4.5.2 Plane and sphere: anholonomic basis

Now return to the plane E2, this time using the anholonomic basis (3.240). The connection
coefficients, from (3.242), (3.243) are

γ111 ¼ γ112 ¼ γ121 ¼ 0; γ122 ¼ � 1

r
;

γ211 ¼ γ221 ¼ γ222 ¼ 0; γ212 ¼
1

r
:

Hence, from (4.32),

R1
212 ¼ γ122;1 � γ121;2 þ γ1i1 γ

i
22 � γ1i2 γ

i
21 � Ck

12 γ
1
k 2

¼ ∂
∂r

� 1

r

� �
� C2

12γ
1
22 ¼ 0; (4:42)

where (3.261) has been used. We recover the result that the space is flat.
Finally we return to the sphere S2, this time using an anholonomic basis. From (3.249)

we have

γ111 ¼ γ121 ¼ γ222 ¼ γ221 ¼ γ211 ¼ 0; γ212 ¼ �γ122 ¼
1

a
cot θ;

and hence

R1
212 ¼ γ122; 1 � γ121; 2 þ γ1i1 γ

i
22 � γ1i2γ

i
21 � Ck

12 γ
1
k2

¼ � 1

a2
∂
∂θ

ðcot θÞ � C2
12 γ

1
22 ¼

1

a2
cosec2θ � C 2

12 γ
1
22:

C2
12 may be calculated from the Lie algebra (3.262). With

e1 ¼ 1

a

∂
∂θ

; e2 ¼ 1

a sin θ
∂
∂�

we have

½e1; e2� ¼ � cot θ
a sin θ

∂
∂�

¼ � cot θ
a

e2 ;

hence C 2
12 ¼ � cot θ

a
and

R1
2 1 2 ¼ 1

a2
cosec2θ � cot2θ

a2
¼ 1

a2
: (4:43)

Then the components of the Ricci tensor are

R11 ¼ R2
121 ¼ g22g11 R

1
212 ¼ 1

a2
; R22 ¼ R1

212 ¼ 1

a2
; R12 ¼ 0;
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and the curvature scalar is

R ¼ g11 R11 þ g22 R22 ¼ 2

a2
; (4:44)

as in (4.41) above, and as expected.

4.6 Curvature 2-form

We have defined the Riemann tensor above, and argued that, by virtue of the quotient
theorem, it really is a tensor. In this section we present an alternative and more formal
argument for its tensorial nature. This is couched in the language of differential forms. We
introduce a 2-form, the curvature 2-form, which we shall demonstrate to have true tensorial
properties, and whose components in a general basis are precisely those of the Riemann
curvature tensor. We shall illustrate the usefulness of the curvature 2-form by calculating the
curvature of a 2-sphere. This calculation turns out to be considerably shorter than the
equivalent one which involves finding the components of the Riemann tensor.

The curvature 2-form (really amatrix, or a tensor, of 2-forms) is denotedΩ μ
ν and defined as

W μ
ν ¼ dw μ

ν þ w μ
λ ^ w μ

ν: (4:45)

(It might be remarked that this is similar in form to the definition of the torsion 2-form,
Equation (3.231).) We shall first prove that Ωμ

ν is a tensor. We have first to find the
transformation law for ωμ

ν. Transforming from coordinates xμ to x 0μ let us define

p μ 0
ν ¼

∂x0 μ
∂xν

; pν�0 ¼ ∂xν

∂x0�
; (4:46)

transferring the prime from x to the index concerned. This notational change makes the
tensorial manipulations slightly more transparent. Then we have for the basis vectors

eμ 0 ¼ pνμ 0 eν

and

Δ

eμ 0 ¼ Δðpνμ 0 eνÞ ¼ ðd pνμ 0 Þ eν þ pνμ 0

Δ

eν

¼ ðd pνμ 0 Þ eν þ pνμ 0 w�
ν e�

¼ ðd p�μ 0 þ pνμ 0 w�
νÞ e�

¼ ðd p�μ 0 þ pνμ 0 w�
νÞ pλ0� eλ0 :

On the other hand

Δ

eμ 0 ¼ wν0
μ 0 eν 0 ;

hence

wν0
μ 0 ¼ pν

0
� p

λ
μ 0 w�

γ þ pν
0
� dp

�
μ 0 : (4:47)
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Then

W μ 0
ν 0 ¼ dw μ 0

ν 0 þ w μ 0
�0 ^ w�0

ν 0

¼ d ½p μ 0
λ p

�
ν 0 w λ

� þ p μ 0
λ dp

λ
ν 0 �

þ ðp μ 0
λ p

σ
�0 w λ

σ þ p μ 0
λ dP

λ
k 0 Þ ^ ðp�0 χ p ρ

ν 0 wχ
ρ þ p�

0
χ dp

χ
ν 0 Þ

¼ ½ðd p μ 0
λÞ p�ν 0 þ p μ 0

λ ðdp�ν 0 Þ� ^ w λ
�

þ p μ 0
λ p

�
ν 0 dw λ

� þ dp μ 0
λ ^ dp λ

ν 0

þ p μ0
λ p

σ
�0 w λ

σ � p λ
�0 dp μ 0

λ

	 
 ^ p�
0
χ p

ρ
ν 0 wχ

ρ þ p�
0
χ dp

χ
ν0

� �
¼ ½ðdp μ 0

λÞ p�ν 0 þ p μ 0
λðdp�ν 0 Þ� ^ w λ

�

þ p μ 0
λ p

�
ν 0 dw λ

� þ dp μ 0
λ ^ dp λ

ν 0

þ p μ0
λ p

ρ
ν 0 w λ

σ ^ wσ
ρ � p ρ

ν 0 dp
μ 0
λ ^ w λ

ρ

þ p μ 0
λ w λ

σ ^ dpσν 0 � dp μ 0
λ ^ dp λ

ν 0 :

:

There are eight terms in the above final expression. Numbering them 1 to 8, we see that terms
1 and 6 cancel, as also do terms 2 and 7, and terms 4 and 8. This leaves terms 3 and 5, giving

W μ 0
ν 0 ¼ p μ 0

λ p
�
ν 0 ðdw λ

� þ w λ
σ ^ wσ

�Þ ¼ p μ 0
λ p

k
ν 0 W λ

�; (4:48)

which completes the proof that Ωμ
ν is indeed a tensorial 2-form. It may therefore be

expanded in terms of the basis 1-forms θμ:

W μ
ν ¼ 1=2R μ

ν ρ σ q ρ ^ qσ : (4:49)

We shall now show that the quantity Rμ
νρσ is indeed the Riemann–Christoffel curvature

tensor. We have, from (4.45)

W μ
ν ¼ dw μ

ν þ w μ
λ ^ w λ

ν

¼ dðγ μνρq ρÞ þ γ μλ ρ γ
λ
ν σ q

ρ ^ qσ

¼ ðdγ μνρÞ ^ q ρ þ γ μν � dq
k þ γ μλ ρ γ

λ
ν σ q

ρ ^ qσ

¼ γ μν ρ; σ q
σ ^ q ρ � 1=2 γ μν� C

�
ρ σ q ρ ^ qσ þ γ μλ ρ γ

λ
ν σ q

ρ ^ qσ

(in this last line γ μ
νρ,σ should strictly be written as eσ (γ

μ
νρ); and Equation (3.171) has been

used in the second term)

¼ 1=2 ½γ μν ρ; σ � γ μν σ; ρ þ γ μλ ρ γ
λ
ν σ � γ μλ σ γ

λ
ν ρ � γ μν � C

�
ρ σ � q ρ ^ qσ: (4:50)

Equation (4.50) is of the form of (4.49) with

R μ
ν ρ σ ¼ γ μν ρ; σ � γ μν σ; ρ þ γ μλ ρ γ

λ
ν σ � γ μλ σ γ

λ
ν ρ � γ μν � C

�
ρ σ; (4:51)

as in Equation (4.32) above –which we have now proved. In a holonomic basis C κ
ρσ = 0 and

γ κ
μν → Γ κ

μν and we recover (4.31).
Let us illustrate this procedure for S2. In a particular anholonomic basis the non-zero

connection 1-forms are (see (3.248a)) ω1
2 =− cos θ d�, so

W1
2 ¼ dw1

2 þ w1
i ^ wi

2 ¼ dw1
2 ¼ sin θ dθ ^ d�

¼ 1

a2
q 1 ^ q 2 ¼ 1=2R 1

2 i k q i ^ q k
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and hence

R 1
2 1 2 ¼ 1

a2
) R ¼ 2

a2

as in (4.41) above. I hope the reader will notice that the calculation of curvature is much
simpler using differential forms, in this case the curvature 2-form. Apart from the greater
clarity that forms shed on the conceptual nature of the calculations, there is no doubt that
they make calculations much simpler.

Let us finally investigate the connection between the curvature of a space and the non-
commutativity of absolute derivatives when acting on vector fields. First define the curva-
ture operator ρ (U, V):

ρ ðU; VÞ ¼ Δ

U

Δ

V � Δ

V

Δ

U � Δ

½U;V�: (4:52)

We recall that if U and V are vectors, then so is [U,V]. In a holonomic basis [U,V] = 0 if
U, V are both basis vectors, so the last term above disappears. It is clear that ρ is
antisymmetric in its arguments,

ρ ðU; VÞ ¼ �ρ ðV; UÞ: (4:53)

In the basis eμ, with

½eμ; eν� ¼ C λ
μ ν eλ;

we have

ρ ðeμ; eνÞ ¼ Δ

eμ

Δ

eν �

Δ

eν

Δ

eμ �

Δ

C λ
μ ν eλ � Δ

μ

Δ

ν � Δ

ν

Δ

μ � C λ
μ ν

Δ

λ: (4:54)

Since

Δ

μ acts on a vector to give a vector, then ρ(eμ, eν) also operates on one vector to give
another. We have

Δ

ν e� ¼ γ ρ�ν eρ (4:55)

hence

Δ

μ

Δ

ν e� ¼ Δ

μ ðγ ρ� ν eρÞ ¼ γ ρ� ν; μ eρ þ γ ρ� ν γ
σ
ρ μ eσ

(where, strictly, the first term should be eμ(γ
ρ
κν)eρ), and so

ð Δ

μ

Δ

ν � Δ

ν

Δ

μ � C λ
μ ν

Δ

λÞ e�
¼ ðγ ρ� ν; μ � γ ρ� μ; ν þ γ ρ� ν γ

σ
ρ μ þ γ ρ� μ γ

σ
ρ ν � C λ

μ ν γ
ρ
� λÞ eρ

¼ R ρ
� μ νeρ; (4:56)

with Rρ
κμν as in (4.51) above. In particular, in a holonomic system

ρ ðeμ ; eνÞ e� ¼ ½ Δ

μ;

Δ

ν� e� ¼ R ρ
� μ ν eρ; (4:57)

with Rρ
κμν as in (4.31) above. We then clearly see the connection between the non-

commutativity of the absolute derivative in a particular space and the curvature of the
space. It follows straightforwardly from (4.55) that (Problem 4.4)
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V λ
; μ ; ν � V λ

; ν ; μ ¼ �R λ
ρ μ ν V

ρ; (4:58)

V λ
; μ ; ν � Vλ; ν ; μ ¼ þR ρ

λ μ ν Vρ: (4:59)

Finally, it is worth noting, for the record, that in theories with torsion, the right hand sides of
the equations above become modified to include torsion terms.4

4.7 Geodesic deviation

Geodesic deviation is a manifestation of curvature. Let me begin by giving a physical
motivation for introducing it. In General Relativity a particle under the influence of no
force other than gravity follows a geodesic. Because of the Equivalence Principle,
however, the acceleration of one freely falling body has no significance in General
Relativity – see Section 1.2 above. An observer moving with the body also follows a
geodesic, and the particle appears (and therefore is) at rest. What is observable,
however, is the relative acceleration of particles on neighbouring geodesics. An example
was given in Section 1.2, where observers (particles) in a freely falling lift on the Earth
approach one another, in fact accelerate towards one another. This is the so-called ‘tidal
effect’ of the Earth’s gravitational field. We shall now investigate the relative accel-
eration of neighbouring geodesics geometrically and shall find that this depends on the
(Riemannian) curvature of the space, thus giving another connection between a realistic
gravitational field (for example that of the Earth) and the curvature of space (or space-
time).

Consider, then, a one-parameter family of geodesics xμ(s, v), where v labels the geodesic
and s the arc length along a given geodesic. This is illustrated in Fig. 4.10. Let t be the
tangent to a geodesic

t μ ¼ ∂x μ

∂s
: (4:60)

The geodesic equation is

Δ

tt= 0 (autoparallelism), i.e.

Δ

tt ¼ t μ; ν t
ν eμ ¼ 0: (4:61)

We label points on neighbouring geodesics by s and connect these points, labelled by v and
v + δv, by an infinitesimal vector η:

ημ ¼ ∂x μ

∂ν
δν : (4:62)

Now let us calculate

Δ

tη:

4 See, for example, de Felice and Clarke (1990), p. 105.

132 Differential geometry II: geodesics and curvature



Δ

t η ¼ ημ
; ν t

νeμ ¼ ∂ημ

∂xν
þ G μ

ρ ν η
ρ

� �
∂xν

∂s
eμ

¼ ∂ημ

∂s
þ G μ

ρ ν
∂x ρ

∂ν
∂xν

∂s
δν

� �
eμ

¼ ∂2x μ

∂s ∂ν
þ G μ

ρ ν
∂x ρ

∂ν
∂xν

∂s

� �
δν eμ: (4:63)

Similarly, let us calculate
Δ

ηt:

Δ

η t ¼ t μ; ν η
ν eμ ¼ ∂t μ

∂xν
þ G μ

ρ ν t
ρ

� �
∂xν

∂ν
δν eμ

¼ ∂t μ

∂s
þ G μ

ρ ν
∂x ρ

∂s
∂xv

∂v

� �
δv eμ

¼ ∂2x μ

∂s ∂v
þ G μ

ρ ν
∂x ρ

∂s
∂xv

∂v

� �
δν eμ

¼ Δ

t η ; (4:64)

because of the commutativity of second order partial derivatives and the symmetry of Γμ
ρν.

We want to calculate the relative acceleration of two geodesics, that is,

Δ

t ð Δ

tηÞ ¼ Δ

t

Δ

tη:

The geodesic equation

Δ

tt = 0 implies that

Δ

η

Δ

tt = 0, which is the same as

Δ

t

Δ

η þ ½ Δ

η;

Δ

t�
� �

t¼ 0 (4:65)

and hence, using (4.64) and (4.65)

Δ

t

Δ

t η ¼� ½ Δ

η;

Δ

t� t¼ ½ Δ

t;

Δ

η� t¼ ρ ðt; ηÞ t :
Inserting components, this equation is

Δ

t

Δ

t ðημ eμÞ¼ ρ ðt λ eλ; η� e�Þ t μ eμ ¼ t λ η� t μ ρ ðeλ; e�Þ eμ;

s v

s

s + δs

v + δv

η

Fig. 4.10 Two geodesics; v labels the geodesic and s the arc length along a given geodesic.
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which gives, using (4.57)

D2ησ

ds2

� �
eσ ¼ t λ η� t μ R σ

μ λ� eσ

and hence, finally,

D2ησ

ds2
¼ R σ

μ λ� t
μ t λ η�: (4:66)

This is the relative acceleration of two neighbouring geodesics, written in terms of the
absolute derivative (denoted D, in the notation of (3.202a)). We have reverted to the
notation of ordinary, rather than partial, derivatives, to emphasise the fact that we can
forget about the one-parameter family of curves; these equations apply to neighbouring
geodesics. Hence the deviation of geodesics from straight lines (in which the relative
acceleration is zero) does indicate the presence of curvature; and hence the ‘tidal effect’
in the lift in Einstein’s thought-experiment is in turn an indication of a curved space-
time.

4.8 Bianchi identities

The Bianchi identities are interesting in their own right, but for our purposes they are
introduced here only because of their usefulness in the context of Einstein’s equations for
the gravitational field. They are identities involving the covariant derivatives of the Riemann
tensor; we therefore start by taking the (exterior) derivative of the curvature 2-form.

The curvature 2-form is, from Equation (4.45)

W μ
ν ¼ dw μ

ν þw μ
λ ^ w λ

ν: (4:67)

Hence (recall that d2 = 0, and Equation (3.90))

dW μ
ν ¼ dw μ

λ ^ w λ
ν � w μ

λ ^ dw λ
ν: (4:68)

On the other hand,

w μ
λ ^W λ

ν ¼ w μ
λ ^ dw λ

ν þ w μ
λ ^ w λ

� ^ w �
ν;

W μ
λ ^ w λ

ν ¼ dw μ
λ ^ w λ

ν þ w μ
� ^ w �

λ ^ w λ
ν:

The last terms in the above equations are identical (κ and λ are both dummy indices), so
(4.68) gives

dW μ
ν ¼ W μ

λ ^ w λ
ν � w μ

λ ^ W λ
ν: (4:69)

These are the Bianchi identities written in terms of the curvature 2-form. To find their
expression in terms of the Riemann tensor, take an arbitrary point P in the manifold and
choose geodesic local coordinates there, in which (see (4.27)) Γ μ

νλ= 0, and hence ωμ
ν= 0,

so (4.67) gives
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dW μ
ν ¼ 0 ðgeodesic coordinatesÞ: (4:70)

In a holonomic basis we have, from (4.40),

W μ
ν ¼ 1=2R μ

ν ρ σ dx ρ ^ dxσ;

hence

dW μ
ν ¼ 1=2R μ

ν ρ σ; λ dx λ ^ dx ρ ^ dx σ (4:71)

with the consequence that

R μ
ν ρ σ; λ þ R μ

ν σ λ ;ρ þ R μ
ν λ ρ ; σ ¼ 0 ; (4:72)

(the symmetry in the three indices in (4.72) cancelling the antisymmetry in the wedge
products of (4.71), thus yielding (4.70).) This equation holds in a geodesic coordinate
system, in which covariant and ordinary derivatives are the same (the connection coeffi-
cients vanishing); so in a geodesic coordinate system (4.72) may be replaced by

R μ
νρσ; λ þ R μ

νσλ; ρ þ R μ
νλρ;σ ¼ 0 : (4:73)

These, however, are tensor equations, so hold in any coordinate system. They are the
Bianchi identities. They, like the other results in differential geometry that we have obtained,
will find their application to General Relativity in the succeeding chapters.

Further reading

See the ‘Further reading’ for Chapter 3.

Problems

4.1 Show that the 2-dimensional space with metric

ds2 ¼ y dx2 þ x dy2

is curved, and that the curvature scalar is

R ¼ 1

2xy

1

x
þ 1

y

� �
:

4.2 A Riemannian space is said to be of constant curvature if the metric and Riemann
tensors are such that

R hijk ¼ Kðghj gik � ghk gijÞ
where K is a numerical constant. If the metric of such a (3-dimensional) space is

ds2 ¼ dr2 þ f 2ðrÞðdθ2 þ sin2θ d�2Þ;
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with x1 = r, x2 = θ, x3 =�, show that the three independent non-zero components of Rhijk

are R1212, R1313 and R2323. Calculate R1212 and show that Kmay be 1, 0 or−1 according
as f = sin r, r or sinh r (up to a multiplicative constant), provided that f = 0 at r = 0.

(You may assume that the only non-zero Christoffel symbols are

G 1
22 ; G 1

33; G 2
21 ¼ G 2

12 and G 3
31 ¼ G 3

13 :Þ
4.3 A Riemannian 4-space has metric

ds2 ¼ e2σ ½ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2 þ ðdx4Þ2�
where σ = σ(x1, x2, x3, x4). If tμ is the unit tangent to a geodesic prove that, along the
geodesic,

dt μ

δσ
þ 2ðσν t νÞ t μ ¼ σ μ

where σμ ¼ ∂σ
∂xμ

.

4.4 Given that [

Δ

μ,

Δ

ν] eκ=R
ρ
κμν eρ , show that for a vector V =V λeλ,

V λ
;μ;ν � V λ

;ν;μ ¼ �R λ
ρμν V

ρ:

Show also that the covariant components obey

Vλ;μ;ν � Vλ;ν; μ ¼ þR ρ
λμν Vρ :

4.5 Prove that the Bianchi identity (4.64) implies that

R μ
ρ;μ ¼ 1=2R;ρ:
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5
Einstein field equations, the Schwarzschild

solution and experimental tests of
General Relativity

Important milestones in the early history of General Relativity were the Einstein field
equations, Schwarzschild’s solution to them and the observational consequences of this
solution. The Schwarzschild solution1 describes the space-time in the vicinity of a static,
spherically symmetric mass, like the Sun, and the observational tests of this solution include
the precession of the perihelion of planetary orbits – in particular the orbit of Mercury – and
the bending of light in a gravitational field. A more recent test is the so-called radar echo
delay of a signal sent from one planet (Earth) and reflected back from another one. An
additional test of General Relativity, which depends only on the Equivalence Principle and
not on the field equations, is the gravitational red-shift of light. The successful passing of
these tests established General Relativity as the ‘correct’ theory of gravity. A feature of the
Schwarzschild solution, not emphasised in the early days but given great prominence since,
is the presence of the ‘Schwarzschild’ radius, which is the signature for the phenomenon of
black holes. These matters are the concerns of this chapter. We begin with a comparison of
the geodesic equation and the Newtonian limit of a weak, static gravitational field.

5.1 Newtonian limit

Consider the case of a weak, static field (such as, to a good approximation, that of the Sun)
and a particle moving slowly in it (v≪ c). With x0 = ct, x1 = x, x2 = y, x3 = z, an inertial frame
is one in which the metric tensor is

gμ ν ¼ ημ ν ¼ diag ð � 1; 1; 1; 1Þ;
so that ds2 =−c2 dt2 + dx2 + dy2 + dz2. A weak field is one for which

gμ ν ¼ ημ ν þ hμ ν (5:1)

with |hμν|≪ 1; each element of gμν is close to its inertial value. Non-relativistic motion, on

the other hand, implies that τ≈ t,
dx0

dτ
� c,

dxi

dτ
� νi � c, so the geodesic Equation (4.18)

with ρ= i becomes

1

c2
d2xi

dt2
þ Gi

00 ¼ 0 (5:2)

1 Schwarzschild (1916a).



since the terms in
dxi

dτ
are neglected. (We may write this equation as

d2xi

dt2
¼ ai ¼ �c2 G i

00:

then the right hand side represents the ‘gravitational force’, which gives the particle its
acceleration. It is better, however, to discard the use of the term ‘force’ and accustom
ourselves to thinking instead of gravity implying a curved space-time, in which particles
move freely.) The connection coefficient in (5.2) is

Gi
00 ¼ 1=2 gi σð2 g0 σ; 0 � g00; σÞ ¼ �1=2 gi kg00; k

� � 1=2 ηi k
∂h00
∂xk

¼ �1=2

Δ

i h00; (5:3)

where the second and third equalities follow because the field is static, the fourth because we
substitute (5.1), noting that η is constant, but keeping only first order terms in η, and the final
equality since ηik = δik for spacelike indices. Putting (5.3) into (5.2) gives

d2xi

dt2
¼ c2

2

Δ

i h00: (5:4)

This is to be compared with Newton’s equation (see (1.1)–(1.4))

d2x
dt2

¼ g ¼ � Δ
� (5:5)

where � is the gravitational potential. Comparison of (5.4) and (5.5) gives

h00 ¼ � 2�

c2

and hence

g00 ¼ �
�
1þ 2�

c2

�
: (5:6)

We have found one component of the metric tensor gμν! Actually, this is all we can find by
comparing Einstein’s theory with Newton’s, since Newton’s theory describes gravitation by
means of one function only, the scalar field �. (This naturally raises the question, how do we
find the other components of gμν?)

At a distance r from a gravitating body of mass M, we have � ¼ �MG

r
, so

g00 ¼ � 1� 2GM

rc2

� �
and

ds2 ¼ � 1� 2GM

rc2

� �
c2 dt2 þ � � � : (5:7)

The ‘time-time’ component of the metric tensor has been found. This is actually sufficient to
derive the gravitational red-shift, which is therefore a consequence of the Equivalence Principle
alone, since the above reasoning relies only on this. We now turn our attention to the field
equations, which will yield the other components of gμν (answering the question above).
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5.2 Einstein field equations

The question to be answered is: given a particular matter distribution, what are the gμν?
There are two considerations to be borne in mind:

(i) the equations we find must be tensor equations, and the tensors we have to hand, to
describe the gravitational field, are Rκ

λμν, Rμν and R;
(ii) in a larger context we may summarise the present situation in Table 5.1.

The field equations we are looking for are the relativistic generalisations of Laplace’s and
Poisson’s equations, in the cases of a vacuum and matter, respectively; and they should
therefore yield these equations in the non-relativistic limit. Laplace’s and Poisson’s equa-
tions are second order differential equations, and we have seen that in the weak field limit �
becomes essentially g00, so the relativistic field equations should be second order differential
equations in gμν; and, indeed, the tensors above, R

κ
λμν, Rμν and R, all contain second order

derivatives of gμν, since R
κ
λμν involves derivatives of Γ

κ
λμ and Γ

κ
λμ involves derivatives of

gμν. Apart from these guidelines, finding the field equations is a matter of guess-work. Let us
begin with the vacuum field equations.

5.2.1 Vacuum field equations

The right hand side will clearly be zero, since there is no matter. The equation Rκ
λμν= 0 is no

good, though, because that would imply that outside a massive body space-time is flat and
there is no gravitational field. So let us consider the equations

Rμ ν ¼ 0: (5:8)

These are 10 equations for 10 unknowns gμν. They do not imply that Rκ
λμν= 0, since as we

saw in Chapter 4 the Riemann tensor has 20 independent components whereas the Ricci
tensor only has 10, so that Equations (5.8) would constitute 10 relations among the 20
independent components of the Riemann tensor. The Equations (5.8) are in fact the vacuum
Einstein field equations. Their general solution is unknown, but particular solutions are
known, corresponding to cases with particular symmetry, for example the Schwarzschild

Table 5.1

Non-relativistic Relativistic

Equations of motion
Newton:

d2xi

dt2
¼ � Δ

i� Geodesic equation:
d2xμ

ds2
þ Gμ

νρ
dxν

ds
dxρ

ds
¼ 0

Field equations Laplace:∇2� = 0 vacuum
Poisson: ∇2�= 4πρG
matter

Einstein field equations
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solution. We shall show below that the non-relativistic limit of (5.8) gives Laplace’s
equation.

As far as the matter field equations are concerned, it is clear that the right hand side must
be a tensor describing the matter distribution, which in the non-relativistic limit reduces
essentially to ρ, as in Poisson’s equation. This tensor is called the energy-momentum tensor.

5.2.2 Energy-momentum tensor

The energy-momentum tensor (or stress-energy-momentum tensor, or stress-energy tensor),
denoted Tμν, is a rank 2 tensor. It is not to be confused with the energy-momentum 4-vector
(a rank 1 tensor). In this section we exhibit Tμν for dust, that is, incoherent matter whose
particles do not interact. The definition is

T μ ν ¼ ρ0 u
μ uν (5:9)

or more properly

T μ νðxÞ ¼ ρ0ðxÞ uμðxÞ uνðxÞ; (5:10)

where ρ0 is the proper density of matter, that is the density moving with the flow, and uμ is its
4-velocity

u μ ¼ 1

c

dxμ

dτ
: (5:11)

We then have

ds2 ¼ �c2 dτ2 ¼ �c2 dt2 þ dx2 þ dy2 þ dz2 ¼ �c2 dt2 1� ν2

c2

� �

and hence

dτ
dt

¼ 1� v2

c2

� �1=2
¼ 1

γ
;

so that

T 00 ¼ ρ0
dt
dτ

� �2

¼ γ2ρ0 ¼ ρ: (5:12)

Here ρ is the mass density in a moving frame. The two factors of γ are easy to understand: in
Special Relativity the mass (strictly, mass-energy) of moving material increases over its rest
value by a factor γ, and the volume decreases by the same factor. So c2T 00 is the relativistic
energy density of matter. Similarly

T0i ¼ ρ0 u
0ui ¼ ρ0

1

c2
dx0

dτ
dxi

dτ
¼ γ2 ρ0

νi

c
¼ ρ

νi

c
; (5:13)

where νi ¼ dxi

dt
. And finally
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Ti k ¼ ρ0
1

c2
dxi

dτ
dxk

dτ
¼ γ2ρ0

νiνk

c2
¼ ρ

νiνk

c2
: (5:14)

Putting these components together we may display T μν as a matrix

Tμ ν ¼ ρ

1
νx
c

νy
c

νz
c

νx
c

νx2

c2
νxνy
c2

νxνz
c2

νy
c

νyνx
c2

νy2

c2
νyνz
c2

νz
c

νzνx
c2

νzνy
c2

νz2

c2

0
BBBBBBBBB@

1
CCCCCCCCCA
: (5:15)

In the non-relativistic approximation the dominant component of T μν is T 00≈ ρ≈ ρ0, the
density of matter in space.

Energy and momentum are of course conserved quantities, so we expect T μν to obey a
conservation law. We need to find the form of this law, whatever it is, in General Relativity.
In Special Relativity it is

Tμ ν
;ν ¼ 0: (5:16)

To see that this is indeed a conservation law, put μ= 0:

T 00
;0 þ T0i

;i ¼ 0;

1

c

∂ρ
∂t

þ 1

c

∂
∂xi

ðρνiÞ ¼ 0;

∂ρ
∂t

þ Δ: ðρ vÞ ¼ 0: (5:17)

This expresses the law of conservation of energy (strictly mass-energy). The reader might
find it useful to be reminded of a similar law in electrodynamics, that of the conservation
of charge Q. Suppose the charge inside a bounded volume V is Q, then if ρ is the charge
density (see Fig 5.1),

Q ¼
ð
ρ dV :

In any particular frame there are also moving charges so there is also a current density

j ¼ ρ v

where v is the velocity of the moving charge. Charge will then flow out of (or into) the
bounding volume V through its surface S, so that the total charge enclosed in V will in
general change. In a time δt the change in the charge enclosed is

δQ 1 ¼ ∂Q
∂t

δt ¼
ð

∂ρ
∂t

dV
� �

δt:

The charge escaping through the surface is, on the other hand,
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δQ2 ¼
ð
j : dS

� �
δt ¼

ð

Δ: j dV
� �

δt;

where the first integral is taken over the closed surface and the second equality follows from
Gauss’s theorem. The law of charge conservation is δQ1 + δQ2 = 0, i.e.ð

∂ρ
∂t

þ Δ: j
� �

dV ¼ 0;

which implies that, in differential form,

∂ρ
∂t

þ Δ: ðρ vÞ ¼ 0

where ρ is the charge density and v its velocity at any point. This equation is of the same
form as (5.17) above, which therefore expresses the conservation of energy, or more strictly,
mass-energy.

Now put μ= i in Equation (5.16). This gives, successively,

Ti 0
;0 þ Ti k

;k ¼ 0;

1

c

∂
∂t

1

c
ρνi

� �
þ 1

c2
∂
∂xi

ðρνiνkÞ ¼ 0;

∂
∂t
ðρνiÞ þ Δ: ðρνivÞ ¼ 0: (5:18)

This is of the same form as (5.17) above, except that ρ, the energy density, has been replaced
by ρvi, the momentum density, so (5.18) expresses conservation of momentum (density). We
have therefore shown that (5.16) expresses conservation of energy-momentum in Special
Relativity. In General Relativity the conservation law follows by replacing the ordinary
derivative by a covariant one:

T μ ν
;ν ¼ 0: (5:19)

Recall once more that the form of the energy-momentum tensor we have been considering
is appropriate only for dust particles, on which no forces act: the particles do not interact.

V

Fig. 5.1 A volume V containing a total charge Q, with charge density r.
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A more general stress tensor describes a fluid, in which there is pressure (exerting a force
and therefore an acceleration). There is also a stress tensor for the electromagnetic field,
which is important in cosmology. This will be considered later.

5.2.3 Matter field equations

We claim that the relativistic version of Lapace’s (vacuum) equation is Rμν= 0, Equation
(4.8). We want the relativistic version of Poisson’s equation, and it is clear that ρ should be
replaced by Tμν. We might guess that the desired equation is

Rμ ν ¼ 8πG
c2

Tμ ν ð?Þ (5:20)

Both sides of the equation are rank
0
2

� �
tensors. (It is obvious that having defined Rμν and

Tμν, we can raise and lower indices at will. The only requirement is that in a given equation

the tensorial type is the same throughout.) The constant
8πG
c2

will be justified later. Is the

above equation credible? It is not, because T μν
;ν= 0 but Rμν

;ν≠ 0. This latter fact follows
from the Bianchi identities (4.73):

Rμ
ν ρ σ;λ þ Rμ

ν ρ λ;ρ þ Rμ
ν λ ρ; σ ¼ 0:

Putting μ= ρ and contracting gives

R ν σ;λ þ Rμ
ν σ λ;μ � R ν λ;σ ¼ 0;

where the minus sign in the last term follows from the antisymmetry under λ ↔ ρ. On
multiplying by gνσ we find, successively

R ;λ � R μ
λ;μ � Rσ

λ;σ ¼ 0;

δρ
λR;ρ � 2Rρ

λ;ρ ¼ 0;

ðδ ρ
λR� 2Rρ

λÞ;ρ ¼ 0;

ðRρ λ � 1=2gρ λRÞ ; ρ ¼ 0; (5:21)

or

G μ ν
; ν ¼ 0; (5:22)

where

G μ ν ¼ Rμ ν � 1=2 g μ νR (5:23)

is called the Einstein tensor. It is not the Ricci tensor, which has vanishing covariant
divergence, but the Einstein tensor. Then, instead of (5.20) we propose

Rμ ν � 1=2gμ νR ¼ 8πG
c2

Tμ ν (5:24)
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Bridge over the river Tisza in Szeged. Hungarian graffiti artists are clearly well educated but seem to

use unusual units for the gravitational constant. I am grateful to Dr Geretovszkyné Varjú Katalin

for sending this picture.

for the relativistic matter field equations. Note that in the absence of matter, Tμν=0, (5.24) gives

Rμ ν � 1=2 gμ ν R ¼ 0;

which on multiplying by gμν gives R − 2R = 0, (since gμνgμν= 4), hence R = 0, and

Rμ ν ¼ 0;

which are indeed the vacuum field equations (5.8).
We now have to show that the weak field non-relativistic limit of (5.24) gives Poisson’s

equation. First multiply (5.24) by g μν:

R� 2R ¼ 8πG
c2

T ) R ¼ � 8πG
c2

T

where T=gμνTμν. Hence the field equations (5.24) may be rewritten as

Rμ ν ¼ 8πG
c2

ðTμ ν � 1=2 gμ νTÞ: (5:25)

Neglecting terms in
ν2

c2
and ρ

ν
c
, the energy momentum tensor becomes, from (5.15),
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Tμ ν ¼
ρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA:

In the weak field approximation (5.1) above gμν= ημν+ hμν. To lowest order in h this
implies that

g μ ν ¼ ημ ν � h μ ν; (5:26)

since then

g μ�g� ν ¼ ðημ� � h μ�Þðη� ν þ h� νÞ ¼ δμ
ν � hμν þ hμν þOðh2Þ ¼ δ μ

ν

to lowest order (linear approximation), as required. Then, also to lowest order T=−ρ and

T μ ν � 1=2 g μ νT ¼ ρ
2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA ¼ ρ

2
δμ ν; (5:27)

and also

Tμ ν � 1=2 gμ ν T � ημ ρ ην �ðT ρ� � 1=2 T g ρ�Þ ¼ ρ
2

δμ ν: (5:28)

Now let us calculate Rμν. From (4.31) and (4.35) we have

Rμ ν ¼ G�
μ ν;� � G�

μ�;ν þ G�
ρ� Gρ

μ ν � G�
ρ ν Gρ

μ�: (5:29)

To lowest (first) order in h the connection coefficients are

G�
μ ν ¼ 1=2 g� σðgσ μ; ν þ gσ ν;μ � gμ ν; σÞ ¼ 1=2 η� σðhσ μ; ν þ hσ ν;μ � hμ ν; σÞ

so the third and fourth terms on the right hand side of (5.29) are of order h2 and can be
ignored in the linear approximation. We then have, as may easily be verified,

Rμ ν ¼ 1=2 η� σðhσ ν;μ� þ hμ�;σ ν � hμ ν;σ � � hσ �;μ νÞ:
Thus, in the static approximation

R00 ¼ 1=2 η� σðhσ 0; μ 0 þ h0�;σ0 � h00;σ � � hσ �;00Þ

¼ �1=2 η� σh 00; σ � ¼ �1=2 � 1

c2
∂2

∂t2
þ Δ2

� �
h00

¼ �1=2

Δ2 h00:

From above h00 ¼ � 2�
c2 and the above equation gives R00 ¼ 1

c2

Δ2�. The field equation
(5.25) with μ= ν= 0 then gives (see (5.28))

1

c2

Δ2 � ¼ 8πG
c2

ρ
2
) Δ2 � ¼ 4πG ρ;

which is Poisson’s equation (1.6).
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Before leaving this section it might be useful to reflect once more on Table 5.1,
showing the equations of motion for test particles, and the gravitational field equations.
It is clear that given a particular distribution of (heavy) matter, the curvature of space-
time (that is, essentially, gμν) is fixed by the field equations; and therefore the motion of
test bodies is also fixed – they simply follow a geodesic in the curved space. Wheeler
summarises this in one of his famous aphorisms: ‘matter tells space how to curve, and
space tells matter how to move’. This might sound circular, but it isn’t because in the first
statement the amount of matter involved is large – large enough to cause significant
curvature in space-time, whereas the ‘matter’ in the second phrase is simply a test body,
which is small enough not to give rise to any gravitational field of its own. It will be
appreciated, however, that when the mass of a test body becomes large enough to have an
effect on the spatial geometry, then the problem becomes complicated and non-linear. In
fact the gravitational field equations themselves are non-linear and the only method of
procedure is one based on an approximation scheme – a ‘post-Newtonian’ approximation
(General Relativity being a post-Newtonian theory).

Einstein, Infeld and Hoffmann did a significant amount of work on this problem,
which has become known as the problem of motion. They came to the interesting
conclusion that the equations of motion in General Relativity were actually consequences
of the field equations themselves; a situation which, for example, does not hold in
electrodynamics. This general topic of investigation was of particular significance to
Einstein since he took the view that a point mass was a singularity in the gravitational
field, and this would link very intimately questions about the field and its equations with
those of how a point mass moves in the field. From the point of view of modern particle
physics, however, this point of view would seem too simple, since it appears that there
are no massive particles in nature which do not also carry other field quantities. The
electron carries charge, the neutrino weak isospin and weak hypercharge, the quarks
colour; so these particles, on Einstein’s view, are also singularities in the electromagnetic,
weak isospin and weak hypercharge, and colour fields. Perseverance with Einstein’s
question would take us into the territory of unified field theories. These theories belong,
however, to the quantum regime, whereas General Relativity is, at the level we are at
present concerned, a classical theory. Einstein’s question then enters difficult and
unknown territory.

5.3 Schwarzschild solution

We are concerned with a solution of the vacuum field equations Rμν= 0, in the case
corresponding to the Solar System; that is, to a very good approximation, the field produced
by a static spherically symmetric body at rest. The static condition means that gμν is
independent of x0; and in addition ds2 is invariant under x0 → −x0 (time reversal), so there
must be no terms involving dxi dx0 in the expansion of ds2. This means that gi0 = g0i=0. With
these conditions, the most general form of the space-time line element compatible with
spherical symmetry is
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d s2 ¼ �UðrÞ c2 dt2 þ V ðrÞ dr2 þW ðrÞ r2 ðdθ2 þ sin2θ d�2Þ: (5:30)

By virtue of the special symmetry conditions obtaining here, the ten components of the
metric tensor, in general each dependent on all the xμ, reduce to only three functions, and
these are functions of r alone. The field equations are second order differential equations for
these functions. In fact the three functions may be reduced to two. Recall that r is only a
radial parameter, not an actual distance, so it may be replaced by any function of r. Put

Wr2 ¼ r̂2. Then r̂ ¼ ffiffiffiffiffi
W

p
r and

dr̂
dr

¼
ffiffiffiffiffi
W

p
1þ r

2W

dW
dr

� �
, so

Vdr2 ¼ V

W
1þ r

2W

dW
dr

� ��2

dr̂2 � V̂ dr̂2:

We may write, at the same time, UðrÞ ¼Ûðr̂Þ. The effect of all this is to replace r by r̂, to
replace U and V by corresponding functions with hats, but W is replaced by unity in
(5.30). Then removing the hats, and putting, at the same time,

UðrÞ ¼ e2 νðrÞ; V ðrÞ ¼ e2 λðrÞ;

the line element becomes

ds2 ¼ �e2ν c2 dt2 þ e2λ dr2 þ r2ðdθ2 þ sin2 θ d�2Þ: (5:31)

The metric tensor, in covariant and contravariant versions, is then

gμ ν ¼
�e2 ν 0 0 0

0 e2 λ 0 0

0 0 r2 0

0 0 0 r2 sin2θ

0
BBB@

1
CCCA; g μ ν ¼

�e�2 ν 0 0 0

0 e�2 λ 0 0

0 0
1

r2
0

0 0 0
1

r2 sin2θ

0
BBBBB@

1
CCCCCA : (5:32)

The two unknown functions ν(r) and λ(r) will now be found from the vacuum field
equations. We first find the connection coefficients: for example

G1
00 ¼ 1=2 g1σð2g0 σ;0 � g00; σÞ ¼ �1=2 g11g 00;1 ¼ �1=2 e�2 λ ∂

∂r
ð�e 2 νÞ

¼ ν0 e 2 ν�2 λ;

(5:33)

where ν 0 ¼ dν
dr
. Similarly the other connection coefficients turn out to be

G 0
10 ¼ G0

01 ¼ ν0;

G1
11 ¼ λ0; G1

22 ¼ �r e�2 λ; G1
33 ¼ �r sin2θ e�2 λ;

G2
12 ¼ G2

21 ¼ G3
13 ¼ G3

31 ¼ 1

r
; G2

33 ¼ � sin θ cos θ;

G3
2 3 ¼ G3

32 ¼ cot θ; others ¼ 0:

(5:34)

These are now to be substituted in the vacuum equations
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Rμ ν ¼ G�
μ ν; � � G�

μ�; ν þ G�
ρ� Gρ

μ ν � G�
ρ ν Gρ

μ� ¼ 0:

We have, consulting (5.33), (5.34) and remembering the static condition,

R 00 ¼ G�
00; � þ G�

0�; 0 þ G�
ρ� Gρ

00 � G�
ρ0 Gρ

0�

¼ G1
00;1 þ G�

1�G1
00 � ðG1

00 G 0
01 þ G 0

10G1
00Þ

¼ ∂
∂r

ð ν0e2 ν�2λÞ þ ν0e2ν�2λ ν0 þ λ0 þ 2

r

� �
� 2ðν0Þ2e2ν�2λ

¼ e2ν�2λ ν00 þ ν02 � ν0λ0 þ 2ν0

r

� �
:

Then the field equations give

R 00 ¼ ν00 þ ν0 2 � ν0λ0 þ 2ν0

r

� �
e2 ν�2λ ¼ 0: (A)

Similarly,

R11 ¼ �ν00 þ ν0λ0 þ 2λ0

r
� ν0 2 ¼ 0; (B)

R22 ¼ ð�1� r ν0 þ r λ0Þ e�2 λ þ 1 ¼ 0; (C)

R33 ¼ R22 sin
2θ;

Rμν ¼ 0 ðμ 6¼ νÞ: (5:35)

These are three independent equations for the functions ν(r) and λ(r). The factor e2ν−2λ in
Equation (A) is non-zero, so Equations (A) and (B) give, on adding

λ0 þ ν0 ¼ 0 ) λðrÞ þ νðrÞ ¼ const:

As r→∞, however, the metric (5.32) must approach the Minkowski metric ημν, so λ, ν→ 0,
hence the constant above is zero and

λðrÞ ¼ �νðrÞ:
Then Equation (C) gives

ð1þ 2rν0Þe2ν ¼ 1 ) ðr e2νÞ0 ¼ 1 ) r e2 ν ¼ r � 2m;

where 2m is a constant of integration. That is,

e2ν ¼ 1� 2m

r
;

which on comparison with (5.32) gives

g00 ¼ � 1� 2m

r

� �
; g11 ¼ 1

1� 2m

r

:
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In the weak field approximation, however, g00 ¼ � 1� 2GM

rc2

� �
, so we can identify the

constant of integration as m ¼ GM

c2
and finally

ds2 ¼ � 1� 2GM

rc2

� �
c2 dt2 þ dr2

1� 2GM

rc2

þ r2ðdθ2 þ sin2θ d�2Þ (5:36)

or, equivalently,

ds2 ¼ � 1� 2m

r

� �
c2 dt2 þ 1� 2m

r

� ��1

dr2 þ r2ðdθ2 þ sin2θ d�2Þ;

with

m ¼ MG

c2
: (5:37)

This is the Schwarzschild solution. It is exact (and, as a consequence, the weak field
approximation found above is now seen also to be exact – an exact solution of the field
equations). As r → ∞ Schwarzschild space-time approaches Minkowski space-time, as
desired. The solution holds for the space-time outside a body of massM. We shall see that it
gives small corrections to the Newtonian predictions for the motions of light and the planets.
It is worth noting that, for this vacuum solution,M is simply the total mass of the ‘gravitat-
ing’ body; the actual distribution of matter inside the body is irrelevant. This is a feature
shared with Newtonian physics, where for example the gravitational potential due to a mass
M depends only on the mass, not on the distribution of matter inside it.

5.3.1 Apparent ‘singularity’ at r = 2m

A glance at (5.36) above shows that g11, the coefficient of dr2, becomes singular as

r ! 2GM

c2
. What are the consequences of this? Does it give trouble? We shall see that the

consequences are very far-reaching, giving rise to black holes, which have to be investigated
carefully. Here, however, we may note that in the Solar System – which is what is relevant
for many of the tests of General Relativity – this ‘singularity’ gives no trouble. Let me make
the following observations:

(i) For the Sun, M= 1.99× 1030 kg, so

2GM

c2
¼ 2� 1:99� 1030 � 6:67� 10�11

9� 1016
¼ 2:95 km:

This quantity is called the Schwarzschild radius rS, so for the Sun

rS ¼ 2GM

c2
¼ 2m ¼ 2:95 km; (5:38)

and we may write the Schwarzschild metric as
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ds2 ¼ � 1� rS
r

� �
c2 dt2 þ dr2

1� rS
r

þ r2ðdθ2 þ sin2 θ d�2Þ: (5:39)

The question then is: do we have trouble when r → rS? The answer is No, since the
Schwarzschild surface (a spherical surface) r= rS is inside the Sun, whose radius is
R= 6.96× 105 km. So at r= rS the Schwarzschild solution above does not hold, since
it is a solution to the vacuum field equations. The region in which General Relativity

will be tested in the Solar System is that for which r>R, hence
rS
r
54:2� 10�6, and

Schwarzschild space-time differs only very slightly from Minkowski space-time.
(ii) We now know, however, that when stars become sufficiently old they collapse, and

very heavy stars may collapse to r < rS, a radius smaller than their Schwarzschild
radius. In that case the surface r= rS is in the ‘vacuum’, outside the star, and the
problems related to the Schwarzschild surface become real, and will be dealt with in
Chapter 7, where we shall see that light cannot escape from a star whose radius is less
than 2GM/c2. We may note here, however, that the ‘singularity’ r= 2m is more like a
coordinate singularity than an actual singularity in the geometry. By analogy, at the

north and south poles on a sphere g22 = sin
2θ, g22 ¼ 1

sin2θ
! 1 as θ → 0, π. The

(contravariant components of the) metric tensor may become singular, but nothing
unusual appears at the poles; a sphere is, after all, a homogeneous space, and no one
point is different from any other point.

(iii) It is interesting to note that the Schwarzschild radius first appeared in the work of
Laplace in 1798 (the fourth year of the French Republic). Consider a particle of massm
escaping from the gravitational pull of a body (planet, star) of mass M and radius R.
Using a Newtonian argument, the work done to escape is

ð1
R

F dr ¼ mMG

ð1
R

dr
r2

¼ mMG

R
:

Supposing light to consist of particles of mass m travelling at speed v = c with kinetic

energy 1=2 mc
2(!), we may then deduce that the light will not escape if

mMG

R
41=2 mc2,

i.e. if R5
2GM

c2
, precisely the Schwarzschild radius! If the radius of a star is smaller

than its Schwarzschild radius, it will not shine. It is amusing and odd that despite the
gross errors in this derivation, Laplace reached the same conclusion as that mentioned
above concerning black holes. We may take the argument a little further. If the density of
a (spherical) star is ρ, the above condition – that the star will not release light – becomes

R2 4
3c2

8πGρ
;

so if a star (of given density) is big enough, it will not shine. As Laplace remarked, ‘il est
donc possible que les plus grands corps de l’univers, soient par cela même, invisibles.’ (it is
therefore possible that the largest objects in the universe are for that very reason invisible.)
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5.3.2 Isotropic form of the Schwarzschild solution

For some purposes it is useful to express the Schwarzschild metric in a form that makes
explicit its isotropic character. We introduce a new radial coordinate

ρ ¼ 1=2ðr � mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2mr

p
Þ;

or equivalently

r ¼ ρ 1þ m

2ρ

� �2

:

It is then easy to see that

1� 2m

r
¼

1� m

2ρ

� �2

1þ m

2ρ

� �2

and that

1� 2m

r

� ��1

dr2 ¼ 1þ m

2ρ

� �4

dρ2;

so the Schwarzschild line element becomes

ds2 ¼ �
1� m

2ρ

� �2

1þ m

2ρ

� �2 c2 dt2 þ 1þ m

2ρ

� �4

ðdρ2 þ ρ2 dθ2 þ ρ2 sin2θ d�2Þ

¼ �
1� m

2ρ

� �2

1þ m

2ρ

� �2 c2 dt2 þ 1þ m

2ρ

� �4

ðdx2 þ dy2 þ dz2Þ; (5:40)

where the variables x, y and z are defined by x= ρ sin θ cos�, y = ρ sin θ sin �, z= ρ cos θ.
This is the so-called isotropic form of the metric in Schwarzschild space-time.

5.4 Time dependence and spherical symmetry:
Birkhoff’s theorem

Now consider a slightly more general problem; that of a spherically symmetric but time-
dependent gravitational field, satisfying the vacuum field equations. For example we might
have a radially pulsating star (the pulsations compatible with spherical symmetry). Then the
most general form of the metric is
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ds2 ¼ �Pðr; tÞ c2 dt2 þ Qðr; tÞ dr2 þ 2Rðr; tÞ dr dt þ Sðr; tÞ r2ðdθ2 þ sin2 θ d�2Þ:
As before, we can put r̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

Sðr; tÞp
r, so the final term above is r̂ 2(dθ2 + sin2θ d� 2), and P,Q

and R become replaced by new functions. Then with simple relabelling we get
(dΩ2 = dθ2 + sin2θ d�2)

ds2 ¼ �Pðr; tÞ c2 dt2 þ Qðr; tÞ dr2 þ 2Rðr; tÞ dr dt þ r2 dΩ2: (5:41)

Now we can find a function f (r, t) such that

f ðr; tÞ Pðr; tÞ c dt � Rðr; tÞ dr½ �
is a perfect differential, c dF(r, t)

f ðr; tÞ P ðr; tÞ c dt � Rðr; tÞ dr½ � ¼ c dFðr; tÞ:
The condition for this is

∂
∂r

½f ðr; tÞPðr; tÞ� ¼ � ∂
∂t
½f ðr; tÞRðr; tÞ�:

This is regarded as an equation for f (r, t), which may be put in the form

∂f
∂t

¼ 1

R

∂f
∂r

P þ f
∂P
∂r

þ f
∂R
∂t

� �
:

Then, given f (r, t0 ) for all r at t= t0, we can find f (r, t0+ dt). It then follows that

� 1

f 2
1

P
c2 dF2 ¼ �Pc2 dt2 þ 2Rc dt dr � R2

P
dr2

and hence that

ds2 ¼ � 1

f 2
1

P
c2 dF2 þ Qþ R2

P

� �
dr2 þ r2 dΩ2: (5:42)

Comparing this with (5.41) we note that the term in dr dt has disappeared. We may now
define F(r, t) to be a new time parameter t 0

t0 ¼ Fðr; tÞ;
then dropping the prime we may write (5.42) as

ds2 ¼ �Uðr; tÞ c2 dt2 þ V ðr; tÞ dr2 þ r2 dΩ2:

This is similar to (5.30) above, except that U and V are now functions of t as well as of r.
Analogously to (5.31), then, we may put

ds2 ¼ �e2 νðr;tÞ c2 dt2 þ e2λðr;tÞ dr2 þ r2ðdθ2 þ sin2θ d�2Þ: (5:43)

We remind ourselves that this is the general form of the metric in a situation with
spherical symmetry but time dependence also. As before, we now calculate the
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connection coefficients Γμ
νκ and impose the vacuum field equations to find ν(r, t) and

λ(r, t).
In addition to the Christoffel symbols found above, it turns out that the following are

non-zero:

G 0
00 ¼ 1

c

∂ν
∂t

¼ _ν
c
; G1

01 ¼ G1
10 ¼

_λ
c
; G1

11 ¼
_λ
c
e2ðλ�νÞ:

As for the Ricci tensor, R22 and R33 are unchanged. R00 and R11 acquire the following
extra terms:

R 00 ¼ � � � þ 1

c2
_λ _ν� €λ� _λ2
	 


; R11 ¼ � � � þ 1

c2
€λþ _λ2 � _λ _ν
	 


e2ðλ�νÞ:

In addition, there is one non-diagonal component of Rμν:

R01 ¼ 2

rc
_λ:

Hence the condition R01 = 0 implies that _λ ¼ 0, so λ depends only on r; and all the extra
terms in R00 and R11 therefore vanish. The solution to the field equations is therefore found
from (A), (B) and (C) above (after (5.34)), except that ν(r, t) is now a function of r and t. The
equation λ 0 + ν 0 = 0 then gives, on integration,

λðrÞ þ νðr; tÞ ¼ ηðtÞ;
a function of t only, and (C) gives

ð1� 2rλ0Þ e�2λðrÞ ¼ 1 ) e�2 λ ¼ 1� 2m

r
:

Since λ(r) is independent of t, so is m; m = const, as in the static case. Then the solution is

ds2 ¼ �e2ηðtÞ 1� 2m

r

� �
c2 dt2 þ 1� 2m

r

� ��1

dr2 þ r2ðdθ2 þ sin2θ d�2Þ

with m ¼ MG

c2
. This differs from the Schwarzschild solution by the factor e2η(t) in the first

term. We can, however, redefine the time coordinate: put

t0 ¼
ðt
eηðtÞ dt;

then the first term becomes �ð1� 2m
r Þc2 dt02, and we recover the Schwarzschild metric

again. We have therefore shown that any spherically symmetric solution of the field
equations is necessarily static. This is Birkhoff’s theorem. It follows that a star pulsating
radially has the same external field as a star at rest – an interesting result! In other words, a
radially pulsating star emits no gravitational radiation. We shall indeed see below that
gravitational radiation is quadrupolar in nature; a star must oscillate in a quadrupolar manner
to emit radiation – and this mode of oscillation does not possess spherical symmetry.
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5.5 Gravitational red-shift

The Schwarzschild metric tensor

gμν ¼ diag � 1� 2GM

rc2

� �
; 1� 2GM

rc2

� ��1

; r2; r2 sin2 θ

" #
(5:44)

is constant in time, independent of x0 = ct. The parameter t is therefore called world time.
(Its choice is not unique; it may for instance be multiplied by an arbitrary constant.)

Consider the lapse of proper time τ between two events at a fixed spatial point in
Schwarzschild space-time:

ds2 ¼ �c2 dτ2 ¼ �g00 c
2 dt2; g00ðrÞ ¼ 1� 2GM

rc2

� �
;

hence

dτ ¼ ffiffiffiffiffiffi
g00

p
dt: (5:45)

The element of proper time dτ is measured by a clock at the particular point, while the
element of world time dt is fixed for the whole manifold. From (5.44) we see that g00 < 1, so
dτ < dt; in an easy slogan, clocks go slower in a gravitational field. In fact time itself goes
slower in a gravitational field. Consider two equal, originally synchronous, clocks at some
point in a field, both in an inertial frame. Now move one of them to another point, in a
gravitational field, for a certain time and then bring it back to rejoin the first clock. The
lapses of proper time of the clocks will not be the same; the one which has spent time in the
gravitational field will be behind (‘younger’). By the Equivalence Principle this is actually
analogous to the twin paradox; the twin who has undergone an acceleration is younger; and
an acceleration is equivalent to a gravitational field.

How are we to observe this distortion of time by a gravitational field? Suppose a particular
physical process takes a certain time to occur, and this time is measured by a clock. The process
might be a nuclear decay half-life, or it might be light emitted in a particular atomic transition,
which has a particular frequency (an inverse time).Wemight considermeasuring this character-
istic time or frequency at different points in a gravitational field (where g00 differs) and looking
for a variation. This however will not work; there will be no effect, because while the gravita-
tional field affects the physical process it also affects the measuring apparatus (the clock, or the
frequency measuring device), so the recorded result will always be the same.

To get an observable effect we must compare time dilation effects at two different points
in the gravitational field. Let us observe, at r1, light coming from an atomic transition at r2.
The wavelength of the light corresponds to a definite ds, or a definite proper time ds ~ c dτ.
Figure 5.2 shows the emission of two successive wave crests travelling from r2 to r1. Let the
world-time interval between the emission of these crests at r2 be Δt2; this is then also the
world-time interval between the reception of the crests at r1 , since the two crests of light take
the same time to travel.
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At r = r2, dτ2 = proper time interval between successive crests = period of light =
(frequency)−1 , so we may write

dτ2 ¼ 1

ν2
¼ λ2

c
¼ Δ t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðr2Þ

p
:

Also we have

dτ1 ¼ 1

ν1
¼ λ1

c
¼ Δt2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðr1Þ

p
;

where the reader will note the same Δt2 in both expressions, as explained above. Dividing,
we have

ν1
ν2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðr2Þ
g00ðr1Þ

s
with g00 ðrÞ ¼ 1� 2GM

rc2
: (5:46)

The meaning of the symbols is:

ν1 = frequency of light emitted at r2 and received at r1,
ν2 = frequency of light emitted and received at r2

= frequency of light emitted and received at r1,

as per the comments above. In the case of light from the Sun received on Earth we put
r = r2 = surface of Sun, r = r1 = surface of Earth, so

ν1 = frequency of light emitted on Sun, received on Earth,
ν2 = frequency of light emitted and received on Sun

= frequency of light emitted and received on Earth, in the laboratory.

Since in the two cases r = r1 and r = r2 we have
2GM

rc2
� 1, the expression in (5.46) may be

evaluated by a binomial expansion to first order, giving

r

t

r2 r1

Second crest

First crest

Fig. 5.2 Emission of successive crests of light, from r2 to r1.
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ν1
ν2

¼ 1� 2GM

r2c2

� �1=2

1� 2GM

r1c2

� ��1=2

� 1� GM

r2c2

� �
1þ GM

r1c2

� �
� 1þ GM

c2
1

r1
� 1

r2

� �
: (5:47)

Since r1 > r2, then ν1 < ν2 – the light is red-shifted. For the Earth–Sun system,

r2 ¼ RS ¼ solar radius ¼ 6:96� 108m

r1 ¼ R ¼ Earth�Sun distance ¼ 1:5� 1011m 	 RS;

so to leading order we have

ν1
ν2

¼ 1� GMS

RSc2
� 1� 2:12� 10�6; (5:48)

or if ν1 = ν2 +Δν, (Δν = frequency shift)

Δν
ν

¼ �2:12� 10�6: (5:49)

This is the predicted magnitude of the frequency shift of light from the Sun. Spectral lines
from the Sun are compared with the ‘same’ lines observed in the laboratory. The effect is
actually rather small, and difficult to detect, because broadening of spectral lines at T =
3000K and Doppler shifts due to convection currents in the solar atmosphere both tend to
mask the effect being looked for. Nevertheless Brault (1963) gives a value 1.05 ± 0.05 times
the predicted one.

The effect is larger in white dwarfs, which have a similar mass to the Sun’s, but a radius

smaller by a factor between 10 and 100, so
Δν
ν

is greater by a similar factor. The problems

caused by Doppler broadening and so on are less severe, but there is a problem in estimating
the mass of white dwarfs. Nevertheless, for 40 Eridani B the predicted and observed red-
shifts are2

predicted
Δν
ν

¼ �ð5:7
 1Þ � 10�5; observed
Δν
ν

¼ �ð7
 1Þ � 10�5:

Amore precise test for the gravitational frequency shift, however, is not astronomical but
terrestrial, and is actually a blue-shift rather than a red-shift. It is very small indeed in
magnitude, but can be measured very precisely. It was performed by Pound and Rebka in
1960.3 A gamma ray from a 14.4 keVatomic transition in 57Fe falls vertically in the Earth’s
gravitational field through a distance of 22.6 metres. From the formulae above, with

g00ðrÞ ¼ � 1þ 2�ðrÞ
c2

� �
(5:50)

we have, since �/c 2 << 1,

2 Popper (1954).
3 Pound & Rebka (1960).
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ν1
ν2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðr2Þ
g00ðr1Þ

s
¼ 1þ 1

c2
ð�ðr2Þ � �ðr1ÞÞ: (5:51)

Light travels from r2 to r1: ν2 is the frequency measured in a laboratory at r1, and ν1 is the
frequency of the radiation emitted at r2 and received at r1. Then, with ν1 = ν2 +Δν, we have

Δν
ν

¼ 1

c2
ð�ðr2Þ � �ðr1ÞÞ; (5:52)

with Δν < 0 giving a blue-shift and Δν > 0 a red-shift. WithME the mass of the earth and RE

its radius we have �ðrÞ ¼ �GME

r
, r1 = RE, r2 = RE + z, where z is the height of the tower

down which the gamma ray falls. Hence

Δν
ν

¼ GME

c2
1

RE
� 1

RE þ z

� �
� GMEz

c2RE
2 ¼ gz

c2

where g is the acceleration due to gravity at the Earth’s surface = 9.78m s−2. With z = 22.6 m
this gives

Δν
ν

¼ 2:46� 10�15; (5:53)

a very small blue-shift. The 14.4 keV line in 57Fe has a width Γwith Γ/ν = 1.13× 10−12. The
width is actually small, due to the Mossbauer effect, yet nevertheless Γ/ν is 460 times the
value of Δν/ν above and, on the face of it, it would seem impossible to detect this blue-shift.
Pound and Rebka, however, had the clever idea of superimposing onto this gravitational
frequency shift a Doppler frequency shift, by moving the gamma ray source up and down
with a velocity v0 cosωt. In the experiment the gamma ray is detected (at the bottom of the
tower) by resonant absorption in 57Fe, and the effect of moving the detector is to change the
counting rate in such a way that the gravitational frequency shift (which is much smaller)
can actually be observed.4 The experimental result was

Δν
ν

� �
exp

¼ ð2:57
 0:26Þ � 10�15; (5:54)

in striking confirmation of the prediction (5.53). This result has since been improved.5

The most precise test of the gravitational frequency shift to date, however, involves a
rather different type of experiment, using a hydrogen maser in a rocket at an altitude of
10 000 km and comparing its frequency to that of a similar clock on the ground. The
experiment was performed in 1976 by Vessot and Levine, who found agreement between
the observed and predicted frequency shifts at the 70× 10−6 level.6

Let me conclude this section with a couple of remarks. First, tests of the gravitational red-
shift (or blue-shift) are in essence tests of the Equivalence Principle. They do not involve

4 For details the reader is referred to a good account in Weinberg (1972), pp. 82–83.
5 Pound & Snider (1964).
6 Vessot & Levine (1979), Vessot et al. (1980). For more details see Will (1993, 2001).
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Einstein’s field equations, so are not tests of General Relativity in its full form. Second, the
above equations may actually be derived by treating light as a stream of photons with energy
E = hν, which decreases as the light ‘climbs out of’ the gravitational field. This type of
derivation, presented in some books, is not exactly wrong, but it should be clear that if one
takes it seriously, then what is being tested is also quantum theory. The approach above has
nothing to do with quantum theory. Light is simply described by a frequency, an inverse
time. Elsewhere in General Relativity (for example the bending of its path in a gravitational
field) light is described by a null geodesic.7

5.6 Geodesics in Schwarzschild space-time

We are interested in the motion of planets and of light in the gravitational field of the Sun, i.e.
of test bodies in Schwarzschild space-time. This motion is given by the geodesic equation

d2xμ

ds2
þ Gμ

νρ
dxν

ds
dxρ

ds
¼ 0: (5:55)

The connection coefficients Γμνρ have already been found in (5.33) and (5.34) above. With

λ=−ν and e2ν ¼ 1� 2m

r
we then have

G 0
10 ¼ G 0

01 ¼ m

rðr � 2mÞ ;

G1
11 ¼ � m

rðr � 2mÞ ; G1
22 ¼ �ðr � 2mÞ; G1

33 ¼ �ðr � 2mÞ sin θ;

G2
12 ¼ G2

21 ¼ G3
13 ¼ G3

31 ¼ 1

r
; G 2

33 ¼ � sin θ cos θ;

G 3
2 3 ¼ G 3

3 2 ¼ cot θ; others ¼ 0:

(5:56)

With x0 = ct, _t ¼ dt
dτ

etc., the geodesic equation with μ= 0 is

€t þ 2m

rðr � 2mÞ _t _r ¼ 0

or

d
ds

1� 2m

r

� �
_t

� �
¼ 0;

which is integrated to give

1� 2m

r

� �
_t ¼ b ¼ const: (5:57)

The μ = 2 geodesic equation is €θ þ G2
�λ _x� _xλ ¼ 0, which with (5.56) gives

7 For more elaboration of this point see Okun et al. (2000).
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€θ þ 2

r
_r _θ � sin θ cos θ _�2 ¼ 0: (5:58)

The μ= 3 equation likewise becomes

€�þ 2

r
_r _�þ 2 cot θ _θ _� ¼ 0: (5:59)

Instead of the μ= 1 geodesic equation take the line element

ds2 ¼ � 1� 2m

r

� �
c2 dt2 þ 1� 2m

r

� ��1

dr2 þ r2ðdθ2 þ sin2θ d�2Þ (5:60)

and divide it by ds2 =−c2 dτ2 to give

1 ¼ 1� 2m

r

� �
_t 2 � 1� 2m

r

� ��1 _r 2

c2
� r2

c2
_θ2 þ sin2θ _�2
	 


: (5:61)

The advantage of writing this equation is that for light ds2 = 0 so the left hand side of (5.61)
becomes 0 instead of 1. It is then possible to treat the paths of light and planets in a similar way.

Now consider a geodesic passing through a point P on the ‘equator’ θ= π/2, tangent to the
equatorial plane _θ ¼ 0. Then (5.58) gives €θ ¼ 0, so _θ is always zero, hence θ is always π/2, and
planar motion is allowed – in General Relativity, as in Newtonian physics. Then (5.59) gives

€�þ 2

r
_r _� ¼ 0

or

d
ds

r2 _�
	 
 ¼ 0

or, on integration,

r2 _� ¼ a ¼ const: (5:62)

Now substitute (5.57) and (5.62) into (5.61), noting that

_r ¼ dr
d�

_� ¼ dr
d�

:
a

r2
;

then

1 ¼ 1� 2m

r

� ��1

b2 � 1

c2
1� 2m

r

� ��1

a2
1

r4
d�
dr

� �2

� a2

c2r2
:

Then noting that
1

r4
d�
dr

� �2

¼ d
d�

1

r

� �� �2
, and multiplying by 1� 2m

r

� �
=a2 gives

d
d�

1

r

� �� �2
þ 1

r2
¼ c2ðb2 � 1Þ

a2
þ 2mc2

ra2
þ 2m

r3
: (5:63)

Differentiating with respect to � gives
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2
d
d�

1

r

� �
d2

d�2

1

r

� �
þ 2

r

d
d�

1

r

� �
¼ 2mc2

a2
d
d�

1

r

� �
þ 6m

r2
d
d�

1

r

� �
:

Rejecting the solution
d
d�

1

r

� �
¼ 0, which is a circle, we find

d2

d�2

1

r

� �
þ 1

r
¼ mc2

a2
þ 3m

r2
; (5:64)

which is the differential equation for the orbit. In the case of light the left hand side of (5.61)
is 0 instead of 1, and (5.64) becomes replaced by

d2

d�2

1

r

� �
þ 1

r
¼ 3m

r2
: (5:65)

In these equations it will be recalled that m ¼ GM

c2
, M being the mass of the gravitating

body.

5.7 Precession of planetary orbits

In Newtonian theory the differential equation for a planet moving in a non-cicular orbit is

d2u
d�2

þ u ¼ 1

p
(5:66)

where u= 1/r and p = a2/GM = a2/mc2 (see Problem 5.3). The quantity p, the semi-latus
rectum of the ellipse, is given by

p ¼ a0ð1� e2Þ
where a0 is the semi major axis and e the eccentricity. The general solution to
Equation (5.66) is

u ¼ 1

r
¼ 1

p
½1þ e cosð�� αÞ�;

where e and α are constants of integration. We may choose e to be non-negative (e≥ 0),
since the cosine term changes sign when α → α + π. In addition a suitable rotation of the
coordinate system allows us to choose α = 0, so the solution above becomes

u ¼ 1

r
¼ 1

p
ð1þ e cos�Þ; e � 0: (5:67)

This is the equation for an ellipse with eccentricity e. In the case e= 0 the ellipse becomes a
circle. The particle’s closest approach is at � = 0: this is called the perihelion ifM is the Sun
(and the perigee if M is the Earth).

The general relativistic equation for the orbit, (5.64), has a correction term added to the
Newtonian equation (5.66). The relative magnitude of this term, in the case of Mercury,
where r ~ 6× 107 km, is
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3m

r2

. 1

r
¼ 3m

r
� 10�7:

For the last term in (5.64) we then substitute (5.67) and neglect the term in e2, giving

d2

d�2

1

r

� �
þ 1

r
¼ mc2

a2
þ 3m3c4

a4
ð1þ 2e cos�Þ

� mc2

a2
þ 6m3c4

a4
e cos�: (5:68)

The solution to (5.68) is the solution to (5.66) (which is (5.67)) plus the solution to

d2

d�2

1

r

� �
þ 1

r
¼ 6m3c4

a4
e cos�;

that is,

1

r
¼ mc2

a2
ð1þ e cos�Þ þ 6em3c4

a4
� sin�

(where it may be noted that the last term is non-periodic)

¼ mc2

a2
1þ e cos�þ 3em2c2

a2
� sin�

� �

¼ mc2

a2
1þ e cos � 1� 3m2c2

a2

� �� �� �
þO

m

r

� �2
:

The perihelion occurs when 1/r is a maximum, that is when cos � 1� 3m2c2

a2

� �� �
¼ 1,

hence

� ¼ 0;
2π

1� 3m2c2

a2

;
4π

1� 3m2c2

a2

; . . .

� 0; 2π þ 6πm2c2

a2
; . . . � 0; 2π þ δ�; . . .

where δ� is the precession of the ellipse in one revolution:

δ� ¼ 6πm2c2

a2
¼ 6πm

p
¼ 6πMG

c2a0ð1� e2Þ � 0:100 (5:69)

whereM is the mass of the Sun and a0 the semi-major axis of Mercury ≈ 5.8 × 1010 m and
e = 0.21. This is only a tiny amount, but the precession is cumulative and in one hundred
Earth years

δ�100 ¼ 43:0300: (5:70)

An exaggerated picture of a precessing elliptical orbit is shown in Fig. 5.3.
The total observed precession ofMercury is 5600.73 ± 0.4100 per century. The Newtonian-

calculated precession, caused by the motion of the other planets (of which Venus, Earth and
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Jupiter give the largest contributions) is 5557.62 ± 0.400.8 The discrepancy between these
figures is 43.11 ± 0.4. This is consistent with (5.70) and the effect is therefore well explained
by General Relativity.

5.8 Deflection of light

We use Equations (5.57)–(5.59), but (5.61) has zero on the left hand side when light, rather
than a massive test body, is being considered. Then the equation for the ‘orbit’ is (5.65):

d2

d�2

1

r

� �
þ 1

r
¼ 3m

r2
: (5:65)

where, as before, 3m/r 2 >> 1/r. The solution to
d2

d�2

1

r

� �
þ 1

r
¼ 0 is

1

r
¼ 1

r0
cos�; (5:70)

a straight line (Fig. 5.4). Equation (5.65) is solved by substituting (5.70) into the right
hand side:

d2

d�2

1

r

� �
þ 1

r
¼ 3m

r02
cos2�: (5:71)

This has the particular solution

1

r
¼ m

r02
ð1þ sin2�Þ; (5:72)

so (5.65) has the general solution

1

r
¼ 1

r0
cos�þ m

r20
ð1þ sin2�Þ: (5:73)

Now consider the asymptotes:

ð5:70Þ : r ! 1; � ! 
 π=2; ð5:73Þ: r ! 1; � ! 
ðπ=2þ δÞ

Fig. 5.3 A precessing elliptical orbit.

8 These figures are taken from Robertson & Noonan (1968), p. 239.
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with

� 1

r0
sin δþ m

r20
ð1þ cos2δÞ ¼ 0 ) δ ¼ 2m

r0
;

since δ is small. Hence the path of the light ray is as shown in Fig. 5.5 and the total deflection
is, in the case of the Sun,

Δ ¼ 2δ ¼ 4m

r0
¼ 4MG

r0c2
: (5:74)

For light just grazing the Sun the distance of nearest approach, r0, is effectively the Sun’s
radius R, and

Δ ¼ 4MG

Rc2
¼ 1:7500: (5:75)

δ

δ

Fig. 5.5 The path of a light ray in a Schwarzschild field.

r

φ
r0

Fig. 5.4 A straight line – the path of a light ray in flat space-time.
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Stars seen close to the Sun’s edge are of course not visible by day, but become visible at the
time of a total eclipse. Their position relative to the background of other stars then appears
shifted relative to what it is in the usual night sky – they appear to move out from the Sun, as
in Fig. 5.6.

This prediction of General Relativity was first verified in 1919. Two separate expedi-
tions, to Brazil and Guinea, reported deflections of 1.98 ± 0.1600 and 1.61 ± 0.4000, in
reasonable accord with Einstein’s prediction. It was this ‘bending of light’ that really
made Einstein famous. Many measurements of Δ were made in succeeding years, but the
accuracy did not really increase until the advent of very long baseline (more than 800 km)
radio interferometry in 1972, using quasar sources. A 1995 measurement on 3C273 and
3C279 gives9

Δobserved

Δpredicted
¼ 0:9996
 0:0017: (5:76)

5.9 Note on PPN formalism

Since Einstein proposed the theory of General Relativity various other people have
proposed modifications of it. They have in common with it that they are all geometric
theories of gravity, i.e. the gravitational field is manifested in the geometry of space-time
itself – in particular it is curved. These theories then give, in the case of a static, spheri-
cally symmetric mass, a metric similar to the Schwarzschild metric, but with some
different numerical coefficients. A convenient way of discussing the results of these
theories is to introduce two parameters β, γ into the Schwarzschild solution, so that it
now has the form

(a) (b)

Fig. 5.6 (a) Stars in the night sky; (b) the same stars seen near the Sun’s edge at a time of total solar

eclipse – the Sun’s light is blocked by the Moon.

9 Lebach et al. (1995): see also Will (2001) for more information. The result quoted is cast in the language of the
PPN formalism, which is explained in the next section.
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ds2 ¼ � 1� 2m

r
þ 2 β � γð Þm

2

r2

� �
c2 dt2 þ dr2

1� 2 γm
r

þ r2ðdθ2 þ sin2θ d�2Þ: (5:77)

In General Relativity

GR: γ ¼ 1; β ¼ 1: (5:78)

Einstein’s theory and its rivals are all post-Newtonian theories, and these parameters γ, β are
then post-Newtonian parameters.

The most commonly cited alternative to General Relativity is the Brans–Dicke theory,
which includes a scalar field as a way of incorporating Mach’s Principle. This theory has,
however, together with all the other rivals to General Relativity, been to all intents and
purposes ruled out on empirical grounds.10 Many writers, nevertheless, pursue an interest in
these theories, and the PPN (parametrised post-Newtonian) formalism does actually provide
a convenient way of presenting the results of tests of General Relativity. For example the
perihelion precession of a planetary orbit is

δ� ¼ 2þ 2γ� β
3

� �
6πm2 c2

a2
(5:79)

which reduces to (5.69) when β = γ= 1. In a similar way the deflection of light is given by

Δ ¼ 1þ γ
2

� �
4m

r0
(5:80)

which reduces to (5.74) when γ= 1.

5.10 Gravitational lenses

The power of largemasses to bend light paths invites comparison with optical lenses – hence
the topic of ‘gravitational lenses’. The analogy, however, is not complete, as we shall see.

First, consider light coming from infinity and bent by a ‘lens’ L to reach an observer O.
Call the distance of closest approach between the light path and the lens b – an ‘impact
parameter’. The bending of the light path may be simply represented as taking place at one
point, discontinuously, as shown in Fig. 5.7. (Note that the angles involved here are
extremely small; of the order of a few seconds of arc at most, as we saw above. The diagram
is therefore greatly exaggerated.) Light is detected by the observer at a distance D from L:

D ¼ b

θ
: (5:81)

However from (5.74) above θ ¼ Δ ¼ 4m

b
so

10 Some years ago there was a problem connected with solar oblateness, and reason to hope that the Brans–Dicke
theory might clear this up. It now appears, though, that the problem has probably gone away. See for example
d’Inverno (1992), p. 206.
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D ¼ b2

4m
; (5:82)

where, as always, m =MG/c2, M being the mass of the lens. D therefore increases with b:
rays ‘further out’ from L reach the axis at a different point. The lens does not focus the rays to
one point.

Consider the symmetric situation where the source S, lens L and observer O are in a
straight line, as in Fig. 5.8. In a planar cross section the source S appears to the observerO as
two images. There is cylindrical symmetry, however, so the image is actually a ring – the

L

D
b

θ

O

Fig. 5.7 Light coming from infinity is bent by a lens L to reach an observer O.

O

S

L

Einstein ring

Fig. 5.8 In a symmetrical configuration light from a source S is bent by a lens L to reach an observer O, who

then sees the source as an ‘Einstein ring’.
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‘Einstein ring’. What is its (angular) radius? The general situation is sketched in Fig. 5.9:
here the source S, lens L and observer O are not in a straight line. The distances between the
planes are as marked: DLS is the distance from the lens to the source, etc. These distances
depend on the angles, also as marked. Then

θI DS ¼ θS DS þ αDLS (5:83)

but (see (5.74))

α ¼ 4m

b
¼ 4m

θIDL

so

θI ¼ θS þ 4

θI
:
mDLS

DLDS
;

which on relabelling θI → θ becomes

θ ¼ θS þ θE
2

θ
; (5:84)

where

θE
2 ¼ 4mDLS

DLDS
; (5:85)

and θE is called the ‘Einstein angle’. The solutions to this equation give the angular positions
of images in the sky – there are generally two solutions. In the situation whereDLS,DS >>DL

(the source is at an ‘infinite’ distance) we have

DLS DL

DS

b

L

α

α DLS

θS DS

θI DS
S

θS

θI
O

P

Source
plane

Lens
plane

Observer
plane

Fig. 5.9 Observer O sees light from the source S bent by the lens L: O, S and L are not in a straight line.
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θE
2 � 4m

DL
: (5:86)

The significance of the Einstein angle is that in the symmetric case, when the source, lens
and observer are collinear, θS= 0 so θ= θE: the image is a ringwith this angular radius. In the
case of lensing in the galaxy (of one star by another, not the Sun), θE≈ 10−300, an angle
which is too small to be resolvable by current telescopes. This is an example of micro-
lensing. On the cosmological scale, however, (the lensing of one galaxy by another) θE≈ 100,
which is resolvable, and indeed there is observational evidence for lensing on this scale,
known as macrolensing. (For the figures quoted above, see Problem 5.4.)

In a cosmological context lensing may be used – at least in principle, and practice seems
now not far behind – to find the masses and distances away of galaxies acting as lenses. This
is important information, for example in the study of dark matter; the determination of
masses by this method is non-dynamical, in contrast with the usual method of detecting dark
matter. It will be shown here, in a very simple (and somewhat unrealistic) model how this
works.

In the approximation DLS ~DS>>DL =D Equation (5.84) holds with

θE
2 ¼ 4m

D
(5:87)

where m =MG/c2, M being the mass of the lens, and D being its distance away. Hence

θ2 � θS θ � θE
2 ¼ 0: (5:88)

This equation has two solutions, θ1 and θ2 (which are of different signs). Their product is

θ1 θ2j j ¼ θE
2 ¼ 4m

D
: (5:89)

We now find one more relation between θ1 and θ2. This depends on the differing path
lengths of the two rays. Consider a point P in the observer plane on the line SL extrapolated,
as in Fig. 5.10. From P an Einstein ring is seen: so in the planar diagram light fronts arriving

φ

θ1

θ2

S

L

D

C

P
O

Fig. 5.10 Light rays from the source S to observer O.
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along the two paths do so at the same time. In addition, to a good approximation, α, the angle
between these two rays, is equal to θ1 + θ2, the corresponding angle atO. LetOP = d,CP = l1,
DP = l2. Also let CL = LD = h (and LO =D, above). Then by Pythagoras

l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ hþ dð Þ2

q
¼ D 1þ hþ dð Þ2

D2

" #1=2
� Dþ ðhþ dÞ2

2D
:

Similarly

l2 � Dþ ðh� dÞ2
2D

;

so

l1 � l2 ¼ 2hd

D
¼ 2h�:

But 2h=D(θ1 + θ2 ), so l1− l2 =D(θ1 + θ2)� and the time difference between the two signals
arriving at P is

Δt ¼ l1 � l2
c

¼ D

c
ðθ1 þ θ2Þ�: (5:90)

On the other hand �≈ θS (compare Figs. 5.9 and 5.10) and from the theory of quadratic
equations we have from (5.88)

θ1 � θ2j j ¼ θS

(recall once more that θ1 and θ2 are of different signs), hence �= |θ1− θ2| and (5.90) gives

Δt ¼ D

c
θ1

2 � θ2
2

 , hence
θ1

2 � θ2
2

  ¼ cΔt
D

: (5:91)

This is a second relation between θ1 and θ2; so bymeasuring θ1, θ2 andΔt, the Equations (5.89)
and (5.91) allow us in principle to determineD andm, the distance away andmass of the lens. It
wasmentioned above that this model is too simplistic; two effects which have been ignored are
the echo delay effect (the subject of the next section) and the expansion of the Universe.
Nevertheless we have shown how gravitational lensing is a useful tool for cosmology.

5.11 Radar echoes from planets

A previous test for General Relativity, that of the bending of light paths, is a test of the
orbit of a light ray. Modern techniques, however, allow the possibility of measuring
directly the time for light to travel from a source to a reflector (planet or space probe) and
back. In appropriate circumstances this differs from the Newtonian expression by an
amount of the order of 10−4 seconds, an easily measurable time. The best reflector is a
planet (which is less subject to non-gravitational forces like the solar wind than a space

169 5.11 Radar echoes from planets



probe is), and the situation in which relativistic effects are greatest is when the planet is in
‘superior conjunction’, i.e. the Sun is almost on a straight line joining the Earth and the
planet. This is the situation sketched in Fig. 5.11. General relativity predicts that the echo
is delayed relative to the Newtonian prediction, that is, relative to the signal travelling out
and back in a straight line.

Let t(r1, r2) be the coordinate time between the emission of a light signal at r = r1 and its
reception at r = r2. Then the coordinate time interval between the emission of a signal from
the Earth and reception of the echo is

T ¼ 2 ½t ðR; rminÞ þ t ðrP; rminÞ� (5:92)

where rmin is the distance of closest approach of the path to the Sun – see Fig. 5.11. The
corresponding proper time interval is

τ ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2GM

rc2

r
;

and since
GM

rc2
T is of the order of 10−8 s, we ignore this correction factor; we shall see below

that the time delay is of the order of 100 μs, so the dominant effect is due to the fact that the
path is not a straight line. If light travelled in straight lines we should have t (r, rmin) =
tE (r, rmin) (E stands for Euclidean), with

tEðr; rminÞ ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � rmin

2
p

; (5:93)

by Pythagoras.
To obtain t (r, rmin) in the relativistic case we return to the Schwarzschild metric (5.36).

Put ds2 = 0 and dθ = 0 (motion of light in a plane); then we have

Planet

Sun

rp

R

rmin

Null geodesic

Earth

Fig. 5.11 Radar travelling from the Earth to a planet and back, with rmin the distance of closest approach to

the Sun.
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0 ¼ � 1� 2m

r

� �
þ 1

c2

dr
dt

� �2

1� 2m

r

þ r2
d�
dt

� �2

2
6664

3
7775: (5:94)

We can eliminate
d�
dt

by using Equations (5.57) and (5.62), from which

r2
d�
dτ

1� 2m

r

� �
dt
dτ

¼ r2

1� 2m

r

� � d�
dt

¼ a

b
¼ B ¼ const;

and hence

d�
dt

¼ B

r2
1� 2m

r

� �
:

Then (5.94) becomes

0 ¼ � 1� 2m

r

� �
þ 1

c2

dr
dt

� �2

1� 2m

r

þ B2

r2
1� 2m

r

� �2

2
6664

3
7775: (5:95)

We can find B by noting that
dr
dt

¼ 0 when r= rmin, since then the velocity has no radial

component (see the diagram). This gives

B2 ¼ c2rmin
2

1� 2m

rmin

� �

and (5.95) gives, after a bit of rearrangement,

dr
dt

¼ c 1� 2m

r

� �
1�

rmin
2 1� 2m

r

� �2

r2 1� 2m

rmin

� �
2
6664

3
7775
1=2

:

Then

t ðr; rminÞ ¼ 1

c

ð r

rmin

dr0

1� 2m

r0

� �
1�

rmin
2 1� 2m

r0

� �

r2 1� 2m

rmin

� �
2
664

3
775
1=2

:

(5:96)

This is the time taken for light to travel from rmin to r. To first order in the small quantities
m

r

and
m

rmin
this gives
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t ðr; rminÞ � 1

c

ðr
rmin

r0 dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 � rmin

2
p 1þ 2m

r0
þ mrmin

r0 r0 þ rminð Þ
� �

; (5:97)

and on integration

t ðr; rminÞ ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � rmin

2
p

þ 2m ln
r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � rmin

2
p
rmin

 !
þ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � rmin

r þ rmin

r" #
: (5:98)

(Confirmation of the above expressions is left to Problems 5.5 and 5.6.) Note that the first
term in (5.98) is the Euclidean expression (5.93); and note also that the extra terms are
positive: t is greater than in the flat space result – light travels in a curve.

We can then state that the time for light to travel from the Earth (at r =R) to r = rmin is,
since R >> rmin, rmin being taken to be of the order of the Sun’s radius,

t ðR; rminÞ ¼ t1 ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � rmin

2
p

þ 2m ln
2R

rmin

� �
þ m

� �
: (5:99)

Similarly the time from r = rmin to the planet at r = rP is

t ðrP; rminÞ ¼ t2 ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rP2 � rmin

2
p

þ 2m ln
2rP
rmin

� �
þ m

� �
; (5:100)

and the total time of travel from the Earth back to the Earth is

T ¼ 2ðt1 þ t2Þ

¼ 2

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � rmin

2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2P � rmin

2
q

þ 2m ln
4RrP
rmin

2

� �
þ 2m

� �

� 2

c
Rþ rP þ 2m ln

4RrP
rmin

2

� �
þ 1

� �� �
: (5:101)

It is instructive to calculate this quantity for a specific case: let us take Mars, whose distance
from the Sun is rP= 1.52 AU=2.28× 1011m. Then

2

c
ðRþ rPÞ ¼ 2:52� 103 s � 42min: (5:102)

This is the ‘Euclidean’ time. The excess time, or delay, is clearly greatest when rmin takes its
smallest value, which is the radius of the Sun RS. In that case

4RrP
RS

2 ¼ 2:82� 105; ln
4R rP
RS

2

� �
¼ 12:55

and the ‘echo delay’ is

ΔT � 4m

c
ln

4R rP
RS

2

� �
þ 1

� �
¼ 2:66� 10�4 s ¼ 266 μs: (5:103)

It is clear that to detect this effect an accuracy of 1 part in 107 is necessary: to measure it to
within 1%, measurement is required to 1 part in 109. Atomic clocks give an accuracy of 1
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part in 1012, so this is achievable, but it means on the other hand that R+ rP must be known
to an accuracy of the order of 1 km, which presents something of a challenge. Nevertheless
the results are impressive; and are often cast in the PPN formalism. In that formalism the
echo delay above is

ΔT ¼ 1þ γ
2

� �
4m

c
ln

4R rP
RS

2

� �
þ 1

� �
; (5:104)

where, of course (see (5.78)),
ð1þ γÞ

2
¼ 1 in General Relativity. Will (2001) displays the

measured values of
ð1þ γÞ

2
and concludes that agreement with General Relativity holds to

0.1 per cent.

5.12 Radial motion in a Schwarzschild field: black
holes – frozen stars

As observed already, the form of the Schwarzschild metric (5.36) suggests that there may be
interesting phenomena associated with the surface r= 2GM/c2 = 2m. In this section we
consider the radial fall of objects in a Schwarzschild field and see the first indication of
the bizarre nature of this surface.

Consider the motion of a particle falling radially in a Schwarzschild field – into a star, for

example. Suppose it starts at r=R with
dr
dt

¼ 0, as shown in Fig. 5.12, where the spherical

surface r= 2m is also marked. For radial motion we have

ds2 ¼ � 1� 2m

r

� �
c2 dt2 þ 1� 2m

r

� ��1

dr2:

With ds2 =− c2 dτ2, _t ¼ dt
dτ
, _r ¼ dr

dτ
this gives

1� 2m

r

� �
_t 2 � 1

c2
1� 2m

r

� ��1

_r2 ¼ 1; (5:105)

r = 2m

r = R, = 0 dr
dt

Fig. 5.12 A particle falling radially in a Schwarzschild field.
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which, on putting _r ¼ dr
dτ

_t gives

c2
r � 2m

r

� �
� r

r � 2m

� � dr
dt

� �2
" #

_t 2 ¼ c2: (5:106)

The boundary condition r=R ,
dr
dt

¼ 0 gives

dt
dτ

� �
r¼R

¼ R

R� 2m

� �1=2

: (5:107)

From (5.57) above

1� 2m

r

� �
_t ¼ b ¼ const;

hence

b ¼ 1� 2m

R

� �
dt
dτ

� �
R

¼ R� 2m

R

� �1=2

and therefore

dt
dτ

¼ r

r � 2m

� �
b ¼ r

r � 2m

� � R� 2m

R

� �1=2

: (5:108)

Substituting this into (5.106) gives, on rearrangement

dr
dt

¼ �c
r � 2mð Þ 2mð Þ1=2 R� rð Þ1=2

r3=2 R� 2mð Þ1=2
(5:109)

Note the minus sign, selected on taking the square root: it reflects the fact that we are
considering a ‘fall’ into the star, so r decreases as t increases. Finally we have

t ¼ � 1

c

R� 2m

2m

� �1=2ðr
R

ρ3=2 dρ

ðρ� 2mÞðR� ρÞ1=2
: (5:110)

This is the time taken for a particle to travel from r=R to an arbitary r, as measured in
Schwarzschild coordinates, in which t is the time parameter, which is the time measured on a
clock ‘at infinity’ – by a distant observer. It is clear that the form of the integrand above will
diverge when ρ → 2m. To investigate this, put

ρ ¼ 2mþ ε

with ε small. Then (5.109) gives

ct ¼ � R� 2m

2m

� �1=2ðr�2m

R�2m

ð2mþ εÞ3=2 dε
εðR� 2mÞ1=2

¼ �2m

ðr�2m

R�2m

dε
ε

¼ �2m ln
r � 2m

R� 2m

� �
;
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or

r � 2m ¼ ðR� 2mÞ expð�ct=2mÞ: (5:111)

So, as t→∞, r→ 2m: the radial infall of a particle to the Schwarzschild radius takes an infinite
time as seen from a safe distance. This is always assuming, of course, that the surface r=2m is
outside the star, in the vacuum. If we transfer this conclusion to the outer layers of a collapsing
star itself, we then learn that the collapse of a star, as seen from the outside, takes an infinite time
to reach a finite size. The star seems to collapse more and more slowly, and is never seen
collapsing to a point. Zel’dovich and Novikov (1996) call this phenomenon a ‘frozen star’.

This describes the fall of a particle (or of the star itself) as seen by a distant observer. What

about the fall of the particle measured by its own clock?We need to calculate the proper time

for the particle to reach r= 2m, and therefore want
dr
dτ
. From (5.108) and (5.109)

dr
dτ

¼ dr
dt

:
dt
dτ

¼ �c
2m R� rð Þ

R r

� �1=2

¼ �c
2m

R

� �1=2 R

r
� 1

� �1=2

so that

τ ¼ � 1

c

ffiffiffiffiffiffi
R

2m

r ðr
R

dr0

R

r0
� 1

� �1=2 :
On putting ρ ¼ r

R
this gives

τ ¼ � 1

c

ffiffiffiffiffiffi
R3

2m

r ðρ
1

dρ0

1
ρ0 � 1
� �1=2 :

The integral is straightforward to perform and we find

τ ¼ 1

c

ffiffiffiffiffiffi
R3

2m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ 1� ρð Þ

p
þ cos�1 ffiffiffi

ρ
ph i

: (5:112)

This is the proper time for collapse from
r

R
¼ ρ ¼ 1 down to an arbitary value of ρ (<1). It is

clearly finite for all r, even down to r = 0. In fact the proper time to reach r= 0 is

τ0 ¼ π
2c

ffiffiffiffiffiffi
R3

2m

r
: (5:113)

So in summary: an object falls into a collapsed star. Viewed from the outside, the object may
still be seen, even after an infinite time, as it asymptotically approaches the Schwarzschild
radius r= 2m. Measured on its own clock, however, the object only exists for a time given by
(5.113), after which it is crushed to unlimited density at the centre of the star. It seems as if
nothing strange happens at r= 2m.11 In a scenario like this General Relativity provides a
spectacular illustration of the relativity of time.

11 It may be, however, that the scalar quantity constructed by contracting the covariant derivative of the Riemann
tensor with itself changes sign at r= 2m, so that in principle a detector (accelerometer) with sufficient sensitivity
should be able to register when the Schwarzschild surface is crossed. I am grateful to Brian Steadman for this
remark.
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5.13 A gravitational clock effect

After the rather lofty topics above, consider the following simpler, but equally interest-
ing, experiment. Suppose there are two synchronised atomic clocks on the equator.
One is placed on board an aircraft which flies once round the Earth (at a height h) while
the other remains on the ground. After the flight, what is the time discrepancy between
the clocks?12

We use the Schwarzschild metric on the equator (θ = π/2, r = const), so that (5.36)
gives

ds2 ¼ � 1� 2GM

rc2

� �
c2 dt2 þ r2 d�2 ¼ �c2 dτ2 (5:114)

where τ is proper time. Referring to Fig. 5.13, observer A remains at rest on the Earth,

rotating with angular velocity ω ¼ d�
dt
; hence d� =ω dt and from above

dτA2 ¼ 1� 2GM

Rc2

� �
� R2ω2

c2

� �
dt2;

and since
2GM

c2
� 1,

R2ω2

c2
� 1, then

dτA � 1� GM

R c2
� R2ω2

2c2

� �
dt: (5:115)

(Note the logic implied by this derivation: A is moving in a static Schwarzschild field with

velocity Rω ¼ R
d�

dt
.) Observer B, on the other hand, flies round the Earth at a height h: as

shown in Fig. 5.12 she flies eastward. She moves at a speed v relative to the ground, and so
with a speed ≈ v + (R+h)ω with respect to the ‘static’ frame of the Schwarzschild field.
Then

dτB2 ¼ 1� 2GM

Rþ hð Þc2 �
Rþ hð Þωþ νf g2

c2

" #
dt2

and

dτB � 1� GM

Rþ hð Þc2 �
R2ω2 þ 2Rωνþ ν2

2c2

� �
dt: (5:116)

Hence

dτA � dτB ¼ �GMh

R2c2
þ 2Rωþ νð Þν

2c2

� �
dt: (5:117)

12 The following treatment follows closely that of Berry (1976), Section 5.2.
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Then, defining the quantity

Δ ¼ dτA � dτB
dτA

; (5:118)

we have

Δ � �GMh

R2c2
þ ð2Rωþ νÞν

2c2
: (5:119)

Putting in numbers, with h= 104m, v= 300m s−1,
GM

R2
¼ g ¼ 9:81 ms�2, then

gh

c2
¼

1:09� 10�12, 2Rω = 931m s−1 and
ð2Rωþ vÞv

2c2
¼ 2:1� 10�12 and

ΔEastward ¼ 1:0� 10�12; (5:120)

‘eastward’ because this is what we are considering. With a westward journey v → − v and
ð2Rω� vÞv

2c2
¼ 1:05� 10�12, giving

ΔWestward ¼ �2:1� 10�12: (5:121)

These quantities are measurable: the fractional accuracy of cesium clocks is about 1 part in
1013. In 1971 Hafele and Keating13 placed very accurate cesium clocks aboard commercial
airliners and verified the above predictions to about 10%. (The orbits were not in the

V

h

B

A

R

Nω

Fig. 5.13 The Earth, viewed from above: N is the North Pole. Observer A is at rest on the equator, while B

travels with speed v at a height h above the Earth in the equatorial plane. They each carry a clock.

13 Hafele & Keating (1972).
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equatorial plane, but adjustments were made for this.) This clock effect is a gravitational
analogue of the twin paradox, as well as being a test for the Schwarzschild solution.

Further reading

The ‘problem of motion’ is treated in Bergmann (1942), Chapter 15. A later review of it
appears in Einstein & Infeld (1949), reprinted in Kilmister (1973). See also Bażański (1962)
and Synge (1964), Section 4.6.

A translation of Laplace’s essay is given in Appendix A of Hawking & Ellis (1973); see
also Misner et al. (1973), p. 623. A proof of Birkhoff’s theorem appears in Appendix B of
Hawking & Ellis (1973).

A very complete account of alternative theories of gravitation and the PPN formalism
appears in Will (1993); see also Straumann (1991).

More details of gravitational lensing may be found in Chapter 4 of Peacock (1999) and in
Hartle (2003), pp. 234–243 and more details of the radar echo data are given in Will (2001).

Problems

5.1 Laplace claimed that a star of the same density as the Earth with a diameter 250 times
that of the Sun would be unable to shine. Verify this claim.

5.2 In the text it was claimed that the relative frequency of light from an atomic transition in
the Sun (ν1) and in a laboratory on Earth (ν2) is approximately

ν1
ν2

¼ 1þ GMS

c2
1

R
� 1

RS

� �
:

Obtain a higher approximation for this ratio by taking into account the gravitational
field of the Earth itself, and estimate the relative magnitude of this contribution.

5.3 Show that, according to Newtonian theory, for a planet of mass μ in a non-circular orbit
around a Sun of massM, the laws of conservation of energy (kinetic plus potential) and
angular momentum L= μa require that the equation for the orbit, r(�), be (with u= 1/r)

d2u
d�2

þ u ¼ GM

a2
:

5.4 Calculate the Einstein angle for (i) lensing within the galaxy of a star by an object of
solar mass between us and the star, (ii) lensing of a source at a cosmological distance by
a galaxy.

5.5 Prove Equation (5.97).
5.6 Prove Equation (5.98).
5.7 Find the radius at which light travels in a circular path round a body of mass M, (i)

according the General Relativity, (ii) according to Newtonian theory.
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5.8 Show that the lines r variable (θ, �, t constant), are geodesics of the Schwarzschild
metric.

5.9 Consider two identical clocks A and B, synchronised and placed on the equator of the
Earth. Clock A is taken to the North Pole and stays there for a year after which it
returns to clock B on the equator. Ignoring the difference between the equatorial and
polar radii of the Earth, use the Schwarzschild metric to calculate the resulting time
discrepancy between A and B.

5.10 Recalculate the time discrepancy in the previous problem, taking into account the
difference between the polar and equatorial radii of the Earth, given by the ‘flattening
parameter’

δ ¼ RE � RP

RE
¼ 0:0034:

5.11 Using the symbols M, L and T for mass, length and time we may define dimensions of
physical quantities, so that for example density ρ has dimensions [ρ] =ML–3 – mass
divided by volume. Check that the right and left hand sides of the field equation (5.24)
have the same dimension.
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6 Gravitomagnetic effects: gyroscopes
and clocks

We have already explored some features of the Schwarzschild solution, including the tests of
General Relativity that it allows. In the Schwarzschild solution the Sun is taken to be static,
that is, non-rotating. In fact, however, the Sun does rotate, and this suggests the question, is
there another exact solution, a generalisation of the Schwarzschild solution, describing a
rotating source? And, if there is, does it suggest any additional tests of General Relativity?
It turns out that a generalisation of the Schwarzschild solution does exist – the Kerr solution.
This is a rather complicated solution, however; it will be discussed further in the next
chapter. In this chapter we shall find an approximate solution for a rotating source (which of
course will also turn out to be an approximation of the Kerr solution). The tests for this
solution include a prediction for the precession of gyroscopes in orbit round the Earth
(which of course also rotates). This is a tiny effect, but in April 2004 a satellite was launched
to look for this precession, which goes by the names of Lense and Thirring. We shall see that
there is a parallel between the Lense–Thirring effect and magnetism, just as there is between
‘ordinary’ gravity (not involving rotations) and electricity – hence the name ‘gravitomag-
netism’. After a discussion of these matters the chapter finishes with a more theoretical look
at the nature of the distinction between ‘static’ (Schwarzschild) and ‘stationary’ (Kerr)
space-times. We begin with a description of the linear approximation; this is important in its
own right, as well as allowing us to find the space-time metric round a rotating object.

6.1 Linear approximation

This approximation is appropriate for weak gravitational fields. The metric tensor is then
very nearly the Minkowski metric tensor, so we put

gμν ¼ ημν þ hμν; hμν � 1: (6:1)

This approximation was introduced in Section 5.1 to derive the Newtonian limit. Here we
develop it more thoroughly; we shall find the form of the field equations in this approxima-
tion. We assume that at large distances from the source space-time becomes Minkowski, so

lim
r!1 hμν ¼ 0: (6:2)

Because of the smallness of hμν we neglect terms quadratic or of higher order in hμν – this is
precisely the linear approximation. In this approximation we define the raising and lowering
of indices to be performed with ημν, not gμν; for example



A μ
� ¼ η μνAν�; etc:

In this case we cannot assume that gμν= ημν+hμν, so put

g μν ¼ η μν þ χ μν:

Then from gμνgνκ= δμκ it follows that

ðημν þ χ μνÞðην� þ hν�Þ ¼ δμ
�;

hence

χ μ
� þ h μ

� ¼ 0

and

g μν ¼ η μν � h μν: (6:3)

The connection coefficients then are, to first order in h,

G�
λ μ ¼ 1=2 η� ρðhρλ; μ þ hρμ; λ � hλ μ; ρÞ

and the Ricci tensor is

Rμν ¼ Gλ
μν; λ � Gλ

μ λ; ν þOðh2Þ
¼ 1=2ðhλμ; ν λ þ hλν; μ λ � □ hμν � h λ

λ; μνÞ þOðh2Þ; (6:4)

where we are using the convention that all the indices following a comma are differentiating
indices. The field equations are then, from (6.4) and (5.25)

h λ
μ; ν λ þ h λ

ν; μ λ� □ h μν � h λ
λ; μν ¼ � 16πG

c2
Sμν (6:5)

where

Sμν ¼ Tμν � 1=2 gμνT
λ
λ:

To lowest (dominant) order in h, Tμν and therefore Sμν is independent of h (see (5.27)); and
the conservation law (5.19) becomes

∂μ S
μ
ν ¼ 0 ¼ ∂μ T

μ
ν (6:6)

i.e. the conservation law of Special Relativity. So in the linearised theory the gravitational
field has no influence on the motion of matter that produces the field. We can therefore
specify Tμν arbitrarily provided only that the conservation law (6.6) holds; and we can then
calculate hμν from it using the field equations (6.5). (It is therefore possible in principle, as
pointed out by Stephani,1 that an exact solution, provided it could be found, could differ
appreciably from the linearised solution. So we must beware, especially since the linear
approximation may be used in cases where an exact solution is not known; and therefore the
conclusions drawn may not be reliable.)

1 Stephani (1982), p. 121; Stephani (2004), p. 217.
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We nowwant to write the field equation (6.5) in a neater form. Instead of hμνwe introduce
the quantities f μν:

ffiffiffiffiffiffiffi�g
p

g μν ¼ η μν � f μν: (6:7)

Now

gμν ¼ ημν þ hμν ¼
�1þ h00 h01 h02 h03

h10 1þ h11 h12 h13
h20 h21 1þ h22 h23
h30 h31 h32 1þ h33

0
BB@

1
CCA

so

g ¼ ð�1þ h00Þð1þ h11Þð1þ h22Þð1þ h33Þ þOðh2Þ
¼ �1þ h00 � h11 � h22 � h33 þOðh2Þ
¼ �1� h00 � h11 � h22 � h33 þOðh2Þ
¼ �1� h μ

μ þOðh2Þ
and ffiffiffiffiffiffiffi�g

p ¼ 1þ 1=2 h μ
μ þOðh2Þ;

giving

ffiffiffiffiffiffiffiffi�g
p

g μν ¼ ð1þ 1=2 h λ
λÞðη μν � h μνÞ þOðh2Þ

¼ η μν þ 1=2 ημν h λ
λ � h μν þOðh2Þ: (6:8)

From (6.7) and (6.8) we find

f μν ¼ h μν � 1=2 ημν h λ
λ; (6:9)

hence

f μ
μ ¼ �h μ

μ (6:10)

and

h μν ¼ f μν � 1=2 ημνf λλ: (6:11)

Equations (6.10) and (6.11) substituted into (6.4) give

Rμν ¼ 1=2 f λμ � 1=2ηλμf
ρ
ρ

� �
;νλ

þ f λν � 1=2ηλν f
ρ
ρ

� �
;μλ

�□ fμν þ 1=2ημν□ f ρρ þ f ρρ;μν

� �

which becomes, on noting that the second, fourth and final terms cancel,

Rμv ¼ 1=2 f λμ; v λ þ f λv; μ λ � □ fμv þ 1=2 ημv □ f ρρ

� �
:
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We then have

1=2 ημvR ¼ 1=4 ημv η
ρσ½ f λρ; σ λ þ f λσ; ρλ � □ fρσ þ 1=2ηρσ □ f λλ�

¼ 1=2 ημv f
ρσ

; ρσ þ 1=4 ημv □ f λλ

and the field equations Rμν− ½ ημνR = − 8πG
c2

Tμν give

f λμ; v λ þ f λv; μ λ � □ fμv � ημv f
λ�

; λ� ¼ � 16πG
c2

Tμv: (6:12)

These can now be simplified by making a coordinate transformation

x μ ! x 0 μ ¼ x μ þ b μðxÞ; (6:13)

the function b μ(x) will later be chosen to satisfy some condition resulting in the simplifica-
tion of (6.12). The coordinate transformation (6.13), we shall see below, bears some
resemblance to gauge transformations in electrodynamics. Under (6.13)

∂x 0 μ

∂xv
¼ δμ

v þ b μ
; v

and

g μv ! g0μv ¼ ∂x0μ

∂x ρ
∂x 0v

∂x σ
g ρσ ¼ g μv þ g μσ bv; σ þ g ρv b μ

; ρ þOðb2Þ:

We shall choose bμ to be≪1, so the O(b2) terms may be ignored. Written out as a matrix the
right hand side of the above equation has the appearance, to order b,

g00 þ 2g0 σb0; σ g01 þ g0 σb1; σ þ g1 σb0; σ :: ::
:: g11 þ 2g1 σb1; σ :: ::

:: :: g22 þ 2g2 σb2; σ ::
:: :: :: g33 þ 2g3 σb3; σ

0
BB@

1
CCA:

The off-diagonal terms are of first order in h (see (5.3)), or b, so to leading order the
determinant is with g ¼ jgμ νj ¼ jg μνj�1

� �
g0�1 ¼ ðg00 þ 2g0 σb0; σÞðg11 þ 2g1 σb1; σÞðg22 þ 2g2σ b2; σÞðg33 þ 2g3 σ b3; σÞ

¼ g�1 þ 2ðg11 g22 g33 g0 σ b0; σ þ g00 g1σ b1; σg
22 g33

þ g00 g11 g2 σ b2; σg
33 þ g00 g11 g22 g3 σ b3;σÞ

¼ g�1 þ 2g�1ðb0; 0 þ b1; 1 þ b2; 2 þ b3; 3Þ
¼ g�1ð1þ 2 bλ; λÞ:

Then g′ = g(1 + 2bλ,λ)
−1 and

ffiffiffiffiffiffiffiffi
�g0

p
¼ ffiffiffiffiffiffiffi�g

p ð1þ 2 bλ; λÞ�1=2 ¼ ffiffiffiffiffiffiffi�g
p ð1� bλ; λÞ;
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so that to leading order

ffiffiffiffiffiffiffiffi
�g0

p
g0μ v ¼ ffiffiffiffiffiffiffi�g

p ð1� bλ; λÞðg μv þ g μσ bv;σ þ g ρv b μ
; ρÞ

¼ ffiffiffiffiffiffiffi�g
p ðg μv � g μv bλ; λ þ g μσ bv; σ þ g ρv b μ

; ρÞ:

On the other hand, from (6.7) we may define f 0μν

ffiffiffiffiffiffiffiffi
�g0

p
g0 μv ¼ ημv � f 0 μv (6:14)

so that

f 0 μv � f μv ¼ �
ffiffiffiffiffiffiffiffi
�g0

p
g0 μv þ ffiffiffiffiffiffiffi�g

p
g μv

¼ ffiffiffiffiffiffiffi�g
p ðg μv bλ; λ � g μσ bv; σ � g ρv b μ

; ρÞ
¼ ημv bλ;λ � bv; μ � b μ; v

to leading order. So

f 0 μv ¼ f μv � b μ; v � bv; μ þ ημv bλ; λ (6:15)

and

f 0 μv; v ¼ f μv
; v � □ b μ � ðbλ; λÞ;μ þ ðbλ; λÞ; μ ¼ f μv

; v � □ b μ: (6:16)

Now choose bμ to satisfy

□ b μ ¼ f μv
; v

so that

f 0 μv; v ¼ 0; (6:17)

and, from (6.14)

ð
ffiffiffiffiffiffiffiffi
�g0

p
g0 μvÞ; v ¼ 0: (6:18)

This is the harmonic condition and the coordinates in which it holds are called harmonic
coordinates. Substituting (6.15) into (6.12) gives

□ f 0μv þ ημv f
0� λ

; � λ � f 0�μ; v� � f 0�v; μ� ¼ þ 16πG
c2

Tμv;

so that, with (6.17), and dropping the prime on f, the field equations become

□ fμv ¼ 16πG
c2

Tμv; (6:19)

whose solutions obey the harmonic coordinate condition (see (6.14) and (6.18))

f μv
; v ¼ ð ffiffiffiffiffiffiffi�g

p
g μvÞ; v ¼ 0 (6:20)
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where (see (6.9), (6.1) and (6.3))

f μv ¼ h μv � 1=2 ημv h λ
λ;

gμv ¼ ημv þ hμv; g μv ¼ ημv � h μv:
(6:21)

We may note the analogy of the field equation (6.19) under the coordinate condition
(6.20) with Maxwell’s equations under the Lorenz gauge condition

□Aμ ¼ Jμ; A μ
;μ ¼ 0;

the coordinate condition in General Relativity is analogous to the gauge condition in
electromagnetism. Guided by this analogy we may write the solution to (6.19) in terms of
retarded potentials

fμvðr; tÞ ¼ 1

4π
� 16πG

c2

ð
1

jr � r0jTμv r0; t � jr � r0j
c

� �
d3x0; (6:22)

where, as shown in Fig. 6.1, Q, at coordinate distance r′ from the origin, is within the past
light-cone of P, at a distance r. We now consider two particular solutions; the first involving
a static distribution of matter.

6.1.1 Static case: mass

Consider a static distribution of matter of density ρ. From Equation (4.15)

T 00 ¼ T00 ¼ ρ; other Tμv ¼ 0:

O

P

Q

r   ′

r

Light cone

|r – r′|

Fig. 6.1 The retarded potential at P depends on the energy-momentum distribution at Q, which is

within the past light-cone of P.
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The density ρ is independent of x0. Note that this tensor obeys the conservation law (6.6).
If this density is the only source of the gravitational field, the field must also be static.
Then (6.19) becomes

Δ2f00 ¼ 16πGρ
c2

;

Δ2fμv ¼ 0 ððμvÞ 6¼ ð00ÞÞ:
(6:23)

In Newtonian theory the potential � obeys Poisson’s equation ∇2� =− 4πρG, so we have

f00 ¼ � 4

c2
�; other fμv ¼ 0: (6:24)

We may now find an expression for the metric tensor. We have, from (6.1) and (6.11)

gμv ¼ ημv þ hμv ¼ ημv þ fμv � 1=2 ημv f
λ
λ;

hence, with (6.24),

g00 ¼ �1þ f00 þ 1=2 f 00 ¼ �1þ 1=2 f00 ¼ � 1þ 2�

c2

� �
; (6:25)

gi k ¼ δi k þ hi k ¼ δi k þ fi k � 1=2 δi kð�f00Þ ¼ δi k 1� 2�

c2

� �
; (6:26)

and

gi 0 ¼ 0; (6:27)

so the space-time line element is

ds2 ¼ � 1þ 2�

c2

� �
c2 dt2 þ 1� 2�

c2

� �
ðdx2 þ dy2 þ dz2Þ: (6:28)

This is the space-time metric corresponding to a static distribution of matter in the linear
approximation. It is to be noted that it holds both inside and outside the matter distribution.
In the case of a spherically symmetric distribution of matter, ρ= ρ(r), with massM, we have

� ¼ �MG
r , and with m ¼ MG

c2

� �

ds2 ¼ � 1� 2m

r

� �
c2 dt2 þ 1þ 2m

r

� �
ðdx2 þ dy2 þ dz2Þ: (6:29)

Note that this agrees with the Schwarschild solution (5.37): first replace dx2 + dy2 + dz2

by dr2 + r 2
	
dθ2 + sin2θ d�2



, then, concerning the coefficient of (dθ2 + sin2θ d�2), redefine

the parameter r, as explained below Equation (5.30), to make the coefficient simply r̂2, then

remove the hat; and finally note that

�
1−

2m

r

�
−1 =

�
1 +

2m

r

�
in the linear approximation.

The way we have proceeded is, it may be claimed, a more proper way to derive the
Schwarzschild solution; in the derivation in Chapter 5, this solution was found to be a
solution of the vacuum field equations, but we are searching for a solution corresponding
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to a static and spherically symmetric distribution of matter. Finally it should be remarked
that if the distribution of matter is not spherically symmetric, we must put

� ¼ �MG

r
þ � � � :

6.1.2 Rotating body: angular momentum

Consider a body rotating with constant angular velocity ω = d�dt about the z = x3 axis and

assume that v≪ c, where v is the resulting velocity of a typical part of the body. Retaining
terms linear in v/c, the energy-momentum tensor is, from (5.15)

T00 ¼ ρ;

T01 ¼ �T01 ¼ ρvx
c ¼ � ρv

c sin �; T02 ¼ ρvy
c ¼ ρv

c cos �;

other T μv ¼ 0:

(6:30)

Denote the coordinates of a pointQ inside the body by (X, Y, Z) = (X1, X 2, X 3); and those of a
point P outside the body by (x, y, z) = (x1, x2, x3) – see Fig. 6.2. Put r2 = xixi and R2 =X iXi.
With R≪ r we have

jr� Rj ¼ ðr2 � 2 r :Rþ R2Þ1=2 � r 1� r :R
r2

� �
þ � � � ;

jr� Rj�1 ¼ ðr2 � 2 r :Rþ R2Þ�1=2 � 1

r
1þ r :R

r2

� �
þ � � � :

(6:31)

x  3

x  1

x  2

R

Q (X,Y,Z ) P (x,y,z )

O

Fig. 6.2 P is outside, and Q inside, the rotating body.
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The field equation (6.19) then gives, with (6.31)

□ f00 ¼ 16πG
c2

ρ; □ f0 i ¼ 16πG
c2

T0 i; other fμv ¼ 0; (6:32)

with i= 1, 2. Then

Δ2f00 ¼ 16πG
c2

ρ; (6:33)

with the solutions, as above,

g00 ¼ � 1þ 2�

c2

� �
; � ¼ �GM

r
þ � � � (6:34)

and, from (6.22) and (6.31),

f01 ¼ 4G

c2

ð
1

r
1þ r:R

r2

� �
T01 d

3X

¼ 4G

c2
1

r

ð
T01d

3X þ xi

r3

ð
XiT01 d

3X þ � � �
� �

:

(6:35)

Now consider the first integral. We have, from (6.30),

T01 ¼ � ρvx
c

¼ � ρ
c

dX 1

dt
:

On performing the first integral above we are essentially integrating
dX 1

dt
over the circular

motion in the (X1, X2) plane. In the four quadrants the quantity
dX 1

dt
itself has two negative

and two positive signs, as shown in Fig. 6.3(a); it will therefore integrate to zero, and the first

X1

X  2

+

–

+

–

(a)

–

+

+

–

(b)

–

–

–

–

(c)

Fig. 6.3 The signs of the contributions of the integrals (6.35) in the four quadrants.
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term in (6.35) gives no contribution. Now consider the second term, consisting of three

integrals. The quantity X 1dX
1

dt
makes positive and negative contributions as shown in

Fig. 6.3(b), and this clearly integrates to zero. The quantity X 2dX
1

dt
, shown in Fig. 6.3(c),

is negative in all four quadrants, so gives a non-zero contribution. Since X 3 always has the

same sign, however, the quantity X 3dX
1

dt
integrates to zero, just as

dX 1

dt
itself does. The only

non-vanishing term is for i = 2, hence

f01 ¼ 4G

c2
y

r3

ð
Y T01 d

3X ¼ � 4G

c2
y

r3

ð
YT 01 d3X : (6:36)

Similarly,

f02 ¼ 4G

c2
x

r3

ð
XT02 d

3X ¼ � 4G

c2
x

r3

ð
XT 02 d3X : (6:37)

These quantities may be related to the angular momentum of the source J 3, as follows. First
recall that, from Special Relativity,2

J 3 ¼
ð
ðX 1P2 � X 2P1Þ d3X ¼ c

ð
ðX 1T 02 � X 2T01Þ d3X : (6:38)

(Note in passing that the dimensions of the above are correct: T μν has the dimension of mass
density, M L−3, and the dimensions of angular momentum are [J ] =M L2 T−1.) The law of
conservation of angular momentum requires

T μv
; v ¼ 0:

For a static distribution of matter T μ0
,0 = 0; and from cylindrical symmetry, as we have here,

T μ3 = 0, hence with μ= 0 we have

T01
;1 þ T02

;2 ¼ 0: (6:39)

Let us verify this in our example with cylindrical (axial) symmetry:

T μvðR; x3Þ; R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ð Þ2þ x2ð Þ2

q
:

For the rotating system above (see (5.30)),

T 01 ¼ � ρ
c
vðR; x3Þ sin�:

Then

T01
;1 ¼ ∂T01

∂x
¼ ∂T01

∂R
∂R
∂x

þ ∂T 01

∂�
∂�
∂x

¼ � ρ
c
sin� cos�

∂v
∂R

� v

R

� �
:

2 See for example Landau & Lifshitz (1971) p. 79, or Weinberg (1972) p. 46.
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Similarly

T02
;2 ¼ þ ρ

c
sin� cos�

∂v
∂R

� v

R

� �
;

so

T01
;1 þ T02

;2 ¼ 0;

or T 0i
,i= 0. It follows that ð

X kXmT0 i
; i d

3X ¼ 0;

i.e. ð
f∂iðX kXmT 0 iÞ � ð∂iX kÞXmT0 i � X kð∂iX mÞT 0 ig d3X ¼ 0:

The first term vanishes by Gauss’s theorem, leaving

ð
ðXmT0k þ X kT0mÞ d3X ¼ 0;

and hence ð
YT01 d3X ¼ �

ð
XT 02 d3X ¼ 1=2

ð
ðYT01 � XT 02Þ d3X ¼ � J 3

2c
;

using (6.38). Then (6.36) becomes

f01 ¼ 2G

c3
y

r3
J 3: (6:40)

Similarly

f02 ¼ � 2G

c3
x

r3
J 3: (6:41)

These are the solutions to the field equations in our case of cylindrical symmetry of a
rotating source. Practically speaking, however, we shall be concerned with the rotating
Earth, and to a good approximation this exhibits spherical symmetry; and the two equations
above can then be written as

f0 i ¼ εi k mx
kJm: (6:42)

We then have, in the linear approximation

g00 ¼ � 1� 2m

r

� �
¼ � 1� 2GM

rc2

� �
;

gi k ¼ 1þ 2m

r

� �
δi k ¼ 1þ 2GM

rc2

� �
δi k ;

g0 i ¼ 2G

r3c3
εi k mx

kJm:

(6:43)
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These are the components of the metric tensor outside a rotating body of massM and angular
momentum J in the linear approximation. It is not an exact solution to the Einstein field
equations, though we shall see later that there is an exact solution – the Kerr solution –

representing the space-time metric outside a rotating body, which yields the above compo-
nents in the appropriate approximation.

The above metric gives rise to physical effects associated with g0i; spin precession and
the clock effect, to be described below. These of course are gravitational consequences of a
rotating source, not simply kinematic ones. This raises the question of the Equivalence
Principle (EP) again. For a static source EP is the statement that, to some approximation
(i.e. ignoring curvature, or tidal effects) a gravitational field is equivalent to an accelerating
frame of reference. Now an additional question is raised: are the gravitational effects of a
rotating source equivalent to a rotating frame of reference? We shall return to this matter
later. We now consider spin precession, measured in gyroscopes.

6.2 Precession of gyroscopes: the Lense–Thirring effect

We are concerned with precession of angular momentum, commonly stated as spin
precession, in a gravitational field. How do we describe spin? Intuitively – and non-
relativistically – we denote it by a 3-vector S, like J. Following a familiar and slightly
simple-minded logic we could then suppose that relativistically we should define a 4-vector
Sμ. This is the usual procedure adopted in this subject and indeed the one we shall follow
here, but it is worth pausing a minute to describe why the logic is not actually so
straightforward. From the point of view of quantum mechanics spin operators should
obey the commutation relations of SU(2). There should therefore be three such operators;
and non-relativistically, as the reader is doubtless already aware, the electron spin is
described by (ħ/2)σ, where σ are the three Pauli matrices. To generalise this to the relativistic
domain is not so easy, but the first step is to define the so-called Pauli–Lubanski 4-vector
(actually pseudovector) Wμ

3

Wμ ¼ �1=2 εμv� λ J
v � Pλ: (6:44)

Since there are four of these quantities, rather than three, they cannot obey the required
SU(2) commutation relations, but some progress has been made to manufacture operators
derived from Wμ which do obey the required relations.4

These considerations arise, of course, from quantum-mechanical reasoning, and so are
perhaps not so important for our present purpose, which is to describe a spinning gyroscope –
hardly a quantum object! Nevertheless we may observe that by virtue of the totally
antisymmetric symbol εμνκλ above it follows that

WμP
μ ¼ 0; (6:45)

3 See for example Pauli (1965).
4 See Ryder (1999), Gürsey (1965).
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Wμ is orthogonal to momentum, or velocity. This property is retained in the present context.
We therefore define spin by a 4-vector Sμ which is orthogonal to momentum and therefore

velocity v μ ¼ dx μ

dτ
:

dx μ

dτ
Sμ ¼ 0;

hence c
dt
dτ

S0 ¼ � dxi

dτ
Si, or

S0 ¼ � 1

c

dxi

dt
Si: (6:46)

We also suppose that the spin vector Sμ is covariantly constant (has vanishing absolute
derivative) and is therefore parallel-transported along a geodesic

dSμ
dτ

¼ Gλ
μv Sλ

dx μ

dτ
:

This means that

dSi
dt

¼ dSi
dτ

dτ
dt

¼ ðG0
i vS0 þ Gk

i vSkÞ dx
v

dt

¼ � 1

c
G0

i v
dx k

dt
Sk þ Gk

i vSk

� �
dxv

dt

¼ �G0
i 0
dx k

dt
� 1

c
G0

i m
dxm

dt
dx k

dt
þ cGk

i 0 þ Gk
i m

dxm

dt

� �
Sk : (6:47)

The connection coefficients Γλμν are now calculated from the metric (6.43) above. We
are already working in the linear approximation (weak gravitational field); and we shall
apply our eventual result (of spin precession) to a gyroscope in orbit round the Earth. It is
therefore a good idea to find numerical orders of magnitude for the terms in the metric. The
metric tensor is

gμv ¼

� 1þ 2�

c2

� �
ζ 1 ζ 2 ζ 3

ζ 1 1� 2�

c2
0 0

ζ 2 0 1� 2�

c2
0

ζ 3 0 0 1� 2�

c2

0
BBBBBBBBB@

1
CCCCCCCCCA
; (6:48)

with

� ¼ �MG

r
; ζ i ¼

2G

r3c3
εi k m x k Jm: (6:49)
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The quantities
�

c2
and ζi are dimensionless and in the case of the Earth are of the order

�

c2
� 10�9 and ζi ~ 10

−17. So in calculating g μν we may ignore terms in �2, �ζi, ζi ζk. Then

g ¼ det gμv � � 1� 4�

c2

� �

and

g μv ¼

� 1� 2�

c2

� �
ζ 1 ζ 2 ζ 3

ζ 1 1þ 2�

c2
0 0

ζ 2 0 1þ 2�

c2
0

ζ 3 0 0 1þ 2�

c2

0
BBBBBBBBB@

1
CCCCCCCCCA
: (6:50)

The quantities � and ζ are time-independent and we get, to leading order

G0
i 0 ¼ 1

c2

Δ

i�

Gk
i 0 ¼ 1=2ðζ k; i � ζ i; kÞ

Gk
i m ¼ 1

c2
ðδi m Δ

k�� δi
k Δ

m�� δm
k Δ

i�Þ
G0

i m ¼ �1=2ðζ i;m þ ζm; iÞ

(6:51)

(Note that these all have the dimension L−1 (L = length).) Substituting these expressions into
(6.47) gives

dSi
dt

¼ � 1

c2
ð Δ

i �Þvk þ c

2
ðζ k; i � ζ i; kÞ

�

þ 1

c2
ðδi m Δ

k�� δki

Δ

m�� δkm

Δ

i�Þ vm
�
Sk (6:52)

or

dS
dt

¼ � 2

c2
ðv :SÞ Δ

�þ 1

c2
ð Δ

� :SÞv� 1

c2
ðv : Δ

�ÞSþ c

2
½S� ð Δ� ζ Þ�: (6:53)

This formula will lead to spin precession. Note that all the terms except the last one depend
on v, the velocity of the gyroscope in orbit. The final term depends on ∇ × ζ, the angular
momentum of the rotating source. This leads to the famous Lense–Thirring effect, as we
shall see below.

Equation (6.52) must now be solved, and this is done by introducing a new spin operator.
The reasoning is as follows. Parallel transport preserves the value of SμSμ:

d
dt

ðg μvSμSvÞ ¼ 0; g μvSμSv ¼ const;
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or, ignoring the terms in g0i,

g00ðS0Þ2 þ gi kSiSk ¼ const:

Substituting for S0 from (6.46) and for g μν from (6.49) and working to order v2S2 or �S2

then gives

S2 þ 2�

c2
S2 � 1

c2
ðv :SÞ2 ¼ const: (6:54)

We now introduce a new spin vector Σ through the equation5

S ¼ 1� �

c2

� �
S þ 1

2c2
vðv :SÞ: (6:55)

Then, to order v2S2 or �S2 we have

S2 ¼ 1� 2�

c2

� �
S2 þ 1

c2
ðv :SÞ2; 2�S2 ¼ 2�S2;

v :S ¼ v:S 1� �

c2
þ v2

2c2

� �
; ðv :SÞ2 ¼ ðv :SÞ2;

and (6.54) becomes

S2 ¼ const: (6:56)

that is, Σ is a vector whosemagnitude is constant. It will therefore precess, changing only in
direction. To the required order, inverting Equation (6.55) gives

S ¼ 1þ �

c2

� �
S� 1

2c2
v v :Sð Þ: (6:57)

We must now calculate dS
dt to find the precession formula. Ignoring terms in

v2

c2
×

dS
dt

we have

dS
dτ

¼ dS
dt

þ 1

c2
d�
dt

S� 1

2c2
dv
dt

ðv :SÞ � 1

2c2
v

dv
dt
:S

� �
: (6:58)

We now put

d�
dt

¼ ∂�
∂t

þ Δ

� : v ¼ Δ

� : v;
dv
dt

¼ � Δ

� ðaccelerationÞ

so that (6.58) becomes

dS
dτ

¼ dS
dt

þ 1

c2
ð D

� : vÞSþ 1

2c2
ðv :SÞ Δ

�þ 1

2c2
ð Δ

� :SÞv:

5 We follow here the procedure of Weinberg (1972), p. 234.
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Substituting for
dS
dt

from (6.53) then gives

dS
dt

¼ c

2
S� ð D� zÞ � 3

2c2
½ Δ

�ðv :SÞ � vð Δ

� :SÞ�:

The term in square brackets above is S × (∇� × v) so we have

dS
dt

¼ S� c

2
ð D� zÞ þ 3

2c2
ðv� Δ

�Þ
� �

:

To the required order of approximation S on the right hand side above may be replaced
by Σ, so finally

dS
dt

¼ W� S; W ¼ � c

2

D� z � 3

2c2
v� Δ

�: (6:59)

The spin Σ precesses at a rate |Ω| around the direction of Ω, with no change of magnitude.
This is the solution to our spin precession problem.

Thinking now specifically of the motion of a gyroscope orbiting the Earth, with r and v
the position and velocity of the gyroscope and J the angular momentum of the Earth, we
may substitute (6.49) into (6.59), giving

W ¼ � c

2

D� 2G

r3c3
r� J

� �
þ 3GM

2c2
v� D1

r

� �

or

W ¼ G

c2r3
3ðJ : rÞr

r2
� J

� �
þ 3GM

2c2r3
r� v: (6:60)

The first term above, dependent on J, gives rise to the so-called Lense–Thirring effect.
The second term, dependent on M but not on J, is known as the de Sitter–Fokker effect, or
simply geodetic precession; it is the precession caused by motion around the geodesic.
Putting J = I ω where I is the moment of inertia, gives

W ¼ WLT þWde Sitter;

WLT ¼ GI

c2r3
3ðw : rÞr

r2
� w

� �
; (6:61)

Wde Sitter ¼ 3GM

2c2r3
r� v: (6:62)

We recall from Chapter 2 that the spin (intrinsic angular momentum) of an electron in orbit
round a proton nucleus also precesses. This is Thomas precession, and the precession rate is
given by (2.82)

WThomas ¼ 1

2c2
v� a ¼ 1

2mc2
v� F; (6:63)
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where a is the acceleration and F = ma the force exerted on the electron. So for the sake of
comparison with (6.59) we may rewrite (2.83) as

DS
Dt

¼ dS
dt

þWThomas � S

(with a + instead of − sign), and ΩThomas is given by (6.62). Putting these results together,
the total precession rate of an object in orbit, subject to both gravitational and non-
gravitational forces, is

W ¼ WThomas þWde Sitter þWLense�Thirring

¼ 1

2mc2
F� vþ 3GM

2c2r3
r� vþ GI

c2r3
3ðw : rÞr

r2
� w

� �
: (6:64)

Here F is the non-gravitational force, M and I are the mass and moment of inertia of the
Earth (or other gravitating body) and m is the mass of the gyroscope. For geodesic motion
F = 0; there is no Thomas precession. On a Newtonian view the gravitational force is

F ¼ GMm
r3

r, so the de Sitter precession could be described as being like Thomas precession

due to the gravitational force, but with an extra factor of 3. In General Relativity, however, a
particle (satellite, gyroscope) in geodesic motion has no absolute acceleration, so no Thomas
precession. On the other hand, there is a precession – the geodetic precession – given by
Ωde Sitter. And, of course, one of the main purposes of the present section is to show that we
have, in addition to geodetic precession, the Lense–Thirring precession caused simply by
the rotation of the Earth. This is something Newton would not have dreamed of!

Let us now calculate some orders of magnitude. For a body in circular motion the time for
one revolution is 2πr/v, so the de Sitter precession rate of 2GMv/2c2r2 radians per second
gives a precession of

δ�de Sitter ¼ 3πGM
rc2

radians per revolution:

This gives, for the Earth orbiting the Sun, 0.019 arc seconds per year, which is too small to
observe. On the other hand a satellite skimming the Earth has a period τ= 2π

ffiffiffiffiffiffi
R3

MG

q
¼ 84:5

minutes, giving 6.2× 103 orbits per year. The precession is then

δ�de Sitter ¼ 3ðMGÞ3=2
2c2

1

R5=2
radians=second (6:65)

which works out at

δ�de Sitter ¼ 8:4 arc seconds=year: (6:66)

For a satellite in an orbit of radius r > R (R = radius of Earth) this clearly becomes
amended to

δ�de Sitter ¼ 8:4
R

r

� �5=2

arc seconds=year; (6:67)

so that at a height of 650 km, R= 6.38× 106m, r = 7.03× 106m and

δ�de Sitter ¼ 6:6 arc seconds=year: (6:68)
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The frequencyΩde Sitter (and therefore δ�de Sitter) does not depend on ω: it is therefore the
same for all orbits of the same radius – polar, equatorial or intermediate. But the orientation
of S in the orbit is important. Let r× v = |r× v|h; so h is a unit vector perpendicular to the
orbital plane. ThenΩde Sitter ~ h and δSde Sitter ~ h× S, so to maximise the precession Smust
be in the orbital plane.Wemust now choose the orbit so that both δ�de Sitter and δ�LT (Lense–
Thirring) are both measurable – and measurable separately. So we now consider δSLT.

First, consider an orbit in the equatorial plane. From above we have seen that S should
be in the orbital plane, so it follows that S ⊥ ω (and of course h || ω). In an equatorial orbit
ω · r = 0 hence (see (6.64))ΩLT ~ω and δSLT ~ω× S. It then follows that δSLT || δSde Sitter –
these vectors are parallel to each other, so the precessions are simply additive and are not
separately measurable. We therefore turn to an orbit in a polar plane.

There are two separate contributions to the Lense–Thirring precession rate, coming from
the terms in r and ω above:

δSLTðiÞ � r� S; δSLTðiiÞ � ω� S;

and note further that ω · r varies over the orbit. To maximise (ii) we want ω ⊥ S, as shown
in Fig. 6.4 – that is, the gyroscope spins in the orbital plane, in a direction which is tangential
to the direction of motion when the satellite is over the poles (and perpendicular to the
Earth’s surface when the satellite passes over the equator). Then δSLT || h – the spin vector is
moved out of the orbital plane. On the other hand the de Sitter precession δSde Sitter ~ S× h,
which is in the orbital plane. The two precessions are therefore at right angles and are
separately measurable. We conclude that to measure these predictions of General Relativity
the satellite should be in a polar orbit and the gyroscope spinning in the orbital plane as
described above.

δφ LT = 0.048 arc seconds/year

δφ de Sitter = 6.6 arc seconds/year

Fig. 6.4 The two types of precession of a gyroscope in polar orbit: motional, or Lense–Thirring,

and geodetic, or de Sitter. Reproduced from Fairbank et al. (1988), with permission of Henry Holt

and Company.
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We now calculate the Lense–Thirring precession. It is not entirely straightforward since
ω · r varies over the orbit, as noted above. Taking an average value over one revolution we
have, from (6.64)

hΩLTi ¼ GI

c2r3
3ðw : kÞr

r2
� w

 �
:

Let us consider motion in the XZ plane:ω =ωk, r= r(i cosωt+ k sinωt), henceω · r=ωr sin
ωt. Then

rðw : rÞ ¼ ωr 2ði cosωt sinωtþ k sin2ωtÞ;

rðw : rÞh i ¼ ωr2

2
k

and

3ðwrÞr
r2

� w
 �

¼ ω
2

k:

Then for a sphere I ¼ 2

5
MR2 and

ΩLTh i ¼ MGR2ω
5c2r3

:

Hence for an orbit which skims the Earth r = R and

ΩLTh i ¼ MGω
5c2R

¼ 0:065 arc seconds=year:

Otherwise, with r > R,

ΩLTh i ¼ 0:065
R

r

� �3

arc seconds=year:

For example, with R = 6.37 × 106 m and r = 7.02 × 106 m,

ΩLTh i ¼ 0:048 arc seconds =year: (6:69)

6.2.1 Gravity Probe B

The precession rates (6.68) and (6.69) are very small but they are being looked for in the
current Gravity Probe B experiment. This experiment, first conceived by Leonard Schiff in
1960, consists of four gyroscopes carried on a satellite. The gyros are spheres of diameter
3.8 cm coated with a 1.2 μm film of niobium, which at 6.5K becomes superconducting.
The spheres are held in place by a magnetic field, with a gap of 32 μm between them. The
smoothness of the spheres is such that, if they were scaled up to the size of the Earth the
maximum roughness would be that of a ploughed field (!). The precession is measured by
locking a telescope onto a guide star, and the rotation of the gyros required to stay in this

198 Gravitomagnetic effects: gyroscopes and clocks



locked-on position is measured by the London moment of the superconducting material, as
measured on a SQUID. A preliminary result gives, specifically for the Lense–Thirring
precession, a measurement which is 99 ± 5 per cent of the predicted value.6

6.2.2 ‘Inertial drag’

Under the influence of Schiff7 the Lense–Thirring effect is commonly described by the
‘dragging’ of inertial frames – almost as if inertial frames were a fluid in which the rotating
body is immersed, and its rotation causes rotation of the space-time frames. Note that the
sense of the rotation is of the opposite sign near the poles (where ω·r=ωr) and near the
equator (where ω·r= 0): from (6.61)

aboveNpole : ðWLTÞpol ¼
2GI

c2r3
w ¼ 4GM

5c2
R2

r3

� �
w;

in equatorial plane : ðWLTÞeq ¼ � GI

c2r3
w ¼ � 2GM

5c2
R2

r3

� �
w:

(6:70)

Then, at r ≈ R,

ðΩLTÞpol ¼
4GM

5c2R
w ¼ 5:52� 10�10w;

ðΩLTÞeq ¼ � 2GM

5c2R
w ¼ �2:76� 10�10w:

As remarked by Schiff, ‘At the poles, this tends to drag the spin around in the same direction
as the rotation of the earth. But at the equator, since the gravitational field falls off with
increasing r, the side of the spinning particle nearest the earth is dragged more than the side
away from the earth, so that the spin precesses in the opposite direction.’ This view, and its
implied analogy with the behaviour of fluids, has been taken up by many authors, in
particular Misner, Thorne and Wheeler,8 but more recently has come in for criticism.9

6.2.3 Lense–Thirring effect and Mach’s Principle

Mach’s Principle asserts that it is only the relative motion of bodies which can play a role in
mechanics: the motion of a body relative to its surrounding space can have no effect, since
space is not ‘real’ – space is only a way of describing the separation of bodies. With this in
mind let us consider the motion of a gyroscope in the Earth’s equatorial plane. From (6.61)
and (6.70)

6 Ciufolini & Pavlis (2004).
7 Schiff (1960).
8 Misner, Thorne & Wheeler (1973).
9 By Rindler (1997).

199 6.2 Precession of gyroscopes: the Lense–Thirring effect



Ω ¼ GM

c2r3
3

2
r� v� 2

5
R2w

� �
:

If h is the unit vector perpendicular to the equatorial plane, r × v = rvh , ω = ωh. We also
have ω= 2π/T (T = 1 day) and v= 2π r/τs, (τs = period of satellite). Then Ω = Ωh with

Ω ¼ πGM
c2

3

rτs
� 4R2

5r3T

� �
:

For a geostationary satellite τs = T and

Ω ¼ πGM
c2Tr

3� 4

5

R

r

� �2
" #

:

The height of a geostationary satellite is r ¼ MGτ2

4π2

� �1=3

� 4:23� 104 km, so
R

r
� 0:15

and

Ω � 2:98
πGM
c2Tr

6¼ 0:

This satellite and the Earth are not rotating relative to each other and yet the Lense–Thirring
effect predicts that the satellite precesses. This certainly seems to violate Mach’s Principle,
according to which Ω = 0, exactly as if neither body were rotating; since of course they are
‘only’ rotating relative to space, and that doesn’t count, according to Mach. One could argue
that althoughΩ≠ 0,Ω is actually small; and one would then try and argue that the satellite is
rotating relative to the rest of the Universe (the ‘background stars’, in Mach’s phrase), and
this contributes a small but non-vanishing effect. The trouble with this argument is that the
solution to the field equations which we are working with makes no reference at all to the
‘rest of the Universe’, so this type of reasoning would seem to be rather disingenuous. For
more discussion of the rather vexed question of Mach’s principle and the Lense–Thirring
effect see ‘Further reading’.

6.3 Gravitomagnetism

The reader will clearly have noticed that the Lense–Thirring effect differs from the other
consequences of General Relativity, the so-called ‘classic tests’ discussed in Chapter 5. It
involves rotations, and correspondingly the time-space components g0i of the metric tensor,
and gives rise to spin precession. These effects are reminiscent of magnetism; for example
the reader will immediately recall the connections between magnetism and rotations. The
present section is devoted to exploring this analogy.

We begin by reminding ourselves of the (very simple) correspondence between gravity
and electricity in the static case. A charge Q gives rise to an electostatic potential �e
a distance r away:

�e ¼ Q

4πε0r
;

200 Gravitomagnetic effects: gyroscopes and clocks



and an associated electric field

E ¼ � D

�e ¼ Q

4πε0r2
r̂: (6:71)

The force on a charge q in this field is

F ¼ qE ¼ Qq

4πε0r2
r̂: (6:72)

Like charges repel, unlike charges attract. AmassM gives rise to a gravitational potential �g:

�g ¼ �MG

r
(6:73)

and an associated gravitational field g

g ¼ � Δ

�g ¼ �MG

r2
r̂: (6:74)

The force on a mass m is

F ¼ m g ¼ �MmG

r2
r̂: (6:75)

Masses (always positive) attract: gravity is always attractive, unlike electricity; it is this, of
course, which is ultimately the source of instability in gravity.

In the non-static case, the Lorentz force law is

F ¼ qEþ qv� B: (6:76)

We define the 4-vector A μ = (�e, A) with

B ¼ Δ� A; E ¼ � Δ

�e � ∂A
∂t

(6:77)

and

�e ¼
ð
ρ
r
dV ; A ¼

ð
j
r
dV ; (6:78)

where ρ is the charge density and j = ρu the current density. The Lorentz force is then

F ¼ q � D

�e � ∂A
∂t

� �
þ qv� ð D� AÞ; (6:79)

giving an acceleration

a ¼ q

m
� D

�e � ∂A
∂t

þ v� ð D� AÞ
� �

: (6:80)

The gravitational analogue of this equation for acceleration is, of course, the geodesic
equation, which we will write in the linear approximation. The geodesic equation is

d2x μ

dτ2
þ G μ

vλ
dxv

dτ
dxλ

dτ
¼ 0:
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In the Newtonian approximation we have (see (5.2) and (5.3))

d2xi

dt2
� �c2 Gi

00 ¼
c2

2
g00;i ¼ � Δ

i �:

We need to work to a higher approximation. We have, then,

ai ¼ d2xi

dt2
¼ dt

dτ

� ��1 d
dτ

dt
dτ

� ��1dxi

dτ

" #

¼ dt
dτ

� ��2d2xi

dτ2
� dt

dτ

� ��3d2t
dτ2

dxi

dτ

¼ �Gi
v λ
dxv

dt
dxλ

dt
þ G0

v λ
dxv

dt
dxλ

dt
dxi

dτ
¼ �c2 Gi

00 � 2 cGi
0k v

k � Gi
k m vk vm

þ ½c2G0
00 þ 2 cG0

0 k v
k þ G0

k m vk vm� vi; (6:81)

where vi ¼ dxi
dt and in the third line we have used the geodesic equation. The equation above

is exact. We now calculate the connection coefficients Γμνλ in the linear approximation.
Many of these have already been found – Equation (6.51) above – but that referred to the
static case. When time dependence is included the coefficients turn out to be

G0
00 ¼ � 1

c3
∂�
∂t

;

G0
i0 ¼ 1

c2

Δ

i �;

G0
i m ¼ �1=2 ðζ i;m þ ζm;iÞ �

1

c2
δkm

∂�
∂t

;

Gi
00 ¼

1

c

∂ζ i

∂t
þ 1

c2

Δ

i �;

Gk
i 0 ¼ 1=2 ðζ k;i � ζ i;kÞ �

1

c3
∂�
∂t

δi k ;

Gk
i m ¼ 1

c2
ðδi m Δ

k �� δki

Δ

m �� δkm

Δ

i �Þ:

(6:82)

Substituting these into (6.81) gives, ignoring terms in v/c2, ∂�/∂t, (v2/c2) ∇i�,

ai ¼ � Δ

i�� c
∂ζ i

∂t
� cðζ i;k � ζ k;iÞvk

or

a ¼ � D

�� c
∂ζ
∂t

þ c v� ð D� zÞ
¼ gþ c v� ð D� zÞ

(6:83)

where

g ¼ � D

�g � c
∂z
∂t

: (6:84)
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Comparing this with Equation (6.80) there is a clear analogy with the Lorentz force
equation, with

�e $ �g;

A $ z:
(6:85)

(In passing, wemay remark that the coefficient (q/m) in the Lorentz equation (6.80) becomes
unity in the gravitational case, since the analogue of electric charge is gravitational mass,
equal to inertial mass by the Equivalence Principle; and we must remember that this analogy
has been derived, and only holds, in the linear approximation – it is not exact.) The quantityD

× A describes a magnetic field. What does

D

× ζ (a ‘gravitomagnetic’ field) describe?
Consider a particle which, in an inertial frame, has velocity v 0 and acceleration a0. In a frame
rotating with angular velocity ω its acceleration is, ignoring the centrifugal force10

a ¼ a0 � 2v0 � w; (6:86)

the second term is the Coriolis force. This is of the same form as (6.83) with

D� z ¼ �2w:

We would therefore expect that this term in the linear approximation corresponds to the
precession of inertial frames. This turns out to be correct; since from (6.49) and the above we
have

w ¼ �1=2

D� z ¼ G

c3

D� J� r
r3

� �

¼ G

c3r5
½3rðJ : rÞ � r2J� ¼ WLT (6:87)

from (6.61); this is precisely Lense–Thirring precession.
The analogy, however, even in the linear approximation, is not exact. Let us write

Equation (6.22) in the symbolic form

fμv ¼ 4G

c2

ð
Tμv
r

dV:

Now from (6.24) � ¼ � c2

4
f00, hence

� ¼ �G

ð
T00
r

dV ¼ �G

ð
ρ
r
dV ; (6:88)

where ρ is the matter density. This equation is analogous to (6.78). On the other hand, with
g0i = ζi = f0i so

ζ i ¼
4G

c2

ð
T0i
r

dV ¼ � 4G

c2

ð
T 0i

r
dV ¼ � 4G

c2

ð
ρui

r
dV ; (6:89)

and the factor of 4 spoils the similarity with the formula (6.78) for A.

10 See for example Kibble & Berkshire (1996), p. 91.

203 6.3 Gravitomagnetism



6.4 Gravitomagnetic clock effect

We now investigate the following problem. Two clocks, initially synchronised, are sent in
circular orbits in the equatorial plane of the Earth, in opposite directions.When they return to
the starting point, will they still tell the same time? Clearly, if the Earth is not rotating, they
will, but what if the Earth is rotating?

Take the Earth to be spinning about the z axis: then J = Jk and (6.49) gives

ζ 1 ¼
2G

r3c3
y J ; ζ 2 ¼ � 2G

r3c3
x J ; ζ 3 ¼ 0

and the metric (6.48) is

gμv ¼

� 1þ 2�

c2

� �
βy �βx ζ 3

βy 1� 2�

c2
0 0

�βx 0 1� 2�

c2
0

ζ 3 0 0 1� 2�

c2

0
BBBBBBBBB@

1
CCCCCCCCCA

(6:90)

with

β ¼ 2GJ

r3c3
; (6:91)

or

ds2 ¼ � 1� 2GM

rc2

� �
c2 dt2 þ 2β y dx� x dyð Þ þ 1þ 2GM

rc2

� �
dx2 þ dy2 þ dz2
	 


:

(6:92)

We now convert the line element into spherical polar coordinates (obviously convenient for
our problem) and find (see Problem 6.2)

gr r ¼ 1þ 2GM

rc2
; gθ θ ¼ r2 1þ 2GM

rc2

� �
; g�� ¼ r2 sin2θ 1þ 2GM

rc2

� �
;

gt r ¼ gt θ ¼ 0; gt � ¼ �2r2β sin2θ;

so that

ds2 ¼� 1� 2GM

rc2

� �
c2 dt2 þ 1þ 2GM

rc2

� �
ðdr2 þ r2dθ2 þ r2 sin2θ d�2Þ

� 4GJ

rc3
sin2θ d�ðc dtÞ:

(6:93)
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Then the covariant metric tensor

gμv ¼

� 1� 2GM

rc2

� �
0 0 � 2GJ

rc3
sin2θ

0 1þ 2GM

rc2
0 0

0 0 r2 1þ 2GM

rc2

� �
0

� 2GJ

rc3
sin2θ 0 0 r2 sin2θ 1þ 2GM

rc2

� �

0
BBBBBBBBBB@

1
CCCCCCCCCCA

has determinant

g � �r4 sin2θ 1þ 4GM

rc2

� �
; g�1 � � 1

r4sin2θ
1� 4GM

rc2

� �

and contravariant components

g μν ¼

� 1þ 2GM

rc2

� �
0 0 � 1

r2 sin2θ

2GM

rc3

0 1� 2GM

rc2
0 0

0 0
1

r2
1� 2GM

rc2

� �
0

� 1

r2 sin2θ

2GM

rc3
0 0

1

r2 sin2θ
1� 2GM

rc2

� �

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

The geodesic equation for r is [(ct, r, θ, �) = (x0, x1, x2, x3)]

€r þ G1
μν _x

μ _xν ¼ 0:

For a circular orbit in the equatorial plane _x1 ¼ 0; _x2 ¼ 0 so only μ, ν = 0, 3 contribute to the
sum above, hence

€r þ G1
00 c

2 _t 2 þ 2G1
03 c _t _�þ G1

33
_�2 ¼ 0;

or, with €r = 0, _� ¼ ω _t,

_t 2½c2 G1
00 þ 2ω cG1

03 þ ω2 G1
33� ¼ 0:

It is straightforward to calculate the connection coefficients; to lowest order we have

G1
00 � GM

r2c2
; G1

03 � � 1� 2GM

rc2

� �
GJ

r2c3
; G1

33 � �r 1� 2GM

rc2

� �
;

and thence, to lowest order

ω2 þ 2GJ

r3c2
ω� GM

r3
¼ 0: (6:94)
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(The reader might find it interesting to check that each term in the above equation has
dimension T−2 (T = time).) This quadratic equation has the two solutions

ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ

r3c2

� �2

þGM

r3

s
þ GJ

r3c2
; ω2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ

r3c2

� �2

þGM

r3

s
� GJ

r3c2
; (6:95)

which correspond to prograde and retrograde motion.
Now for a circular orbit (r = const) in the equatorial plane (θ = π/2) we have, from (6.93)

ds2 ¼ � 1� 2GM

rc2

� �
c2 dt2 þ 1þ 2GM

rc2

� �
r2 d�2 � 4GJ

rc2
d� dt

and with d� = ω dt, the proper time τ is given by, ignoring the term in r2 d�2 (and with
ds2 = − c2 dτ2)

dτ2 � 1

ω2
1� 2GM

rc2
� 4GJω

rc2

� �
d�2 ;

dτ � 1

ω
1� GM

rc2
� 2GJω

rc2

� �
d�:

For one revolution d� = 2π and the period is

T ¼ 2π
ω

1� GM

rc2

� �
þ 4πGJ

rc2
:

Hence, corresponding to the two values of ω,

T1 ¼ 2π
ω1

1� GM

rc2

� �
þ 4πGJ

rc2
; T2 ¼ 2π

ω2
1� GM

rc2

� �
þ 4πGJ

rc2
;

and the ‘clock effect’ is given by

T1 � T2 ¼ 1

ω1
� 1

ω2

� �
2π 1� GM

rc2

� �
:

We have, from (6.94), (6.95)

1

ω1
� 1

ω2
¼ ω2 � ω1

ω1 ω2
¼ 2J

Mc2
:

and finally

T1 � T2 � 4πJ
Mc2

: (6:96)

This is the prediction: after one revolution the two clocks, originally synchronised, will
differ in time by the above amount (to lowest order). A first remarkable feature of this
prediction is that the result is independent of G; we have a consequence of a gravitational

theory that does not involve Newton’s constant of gravitation! For the Earth, J =
2

5
MR2ω and

with R= 6.4× 106m, ω= 7.3× 10−5 s,
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T1 � T2 ¼ 8π
5

R2

c2
ω ¼ 1:7� 10�7 s:

There has been a proposal to measure this, known as Gravity Probe C(lock) – see Gronwald
et al. (1997).

The distinction between this clock effect and the one discussed in Section 5.13 should be
understood. This (‘gravitomagnetic’) one is a time difference between two clocks on geo-
desics, travelling round a rotating Earth in opposite directions. The previous effect was a
difference in time between two clocks being transported (not on geodesics) round the Earth.
The rotation of the Earth is involved, but not as a ‘dynamic’ effect, since the metric is the
Schwarzschild metric.

6.5 Fermi–Walker transport: tetrad formalism

Parallel displacement of a vector appears the most natural way of comparing vectors at
different points in a space, or of transporting a vector from one point to another. But there are
physically important cases in which another kind of transport law is more useful for the
formulation of physical theories.

Consider an observer moving along an arbitrary timelike curve x μ(τ), under the action of
forces (unless the curve happens to be a geodesic). He will regard as ‘natural’ a coordinate
system in which he is at rest and his spatial axes do not rotate. The rest condition is

dxi

dτ
¼ ti ¼ 0; (6:97)

where tμ is the tangent vector and Latin indices refer to the spatial components. The tangent
vector then possesses only a timelike component

t μ ¼ dx μ

dτ
¼ ðt0; 0Þ: (6:98)

The ‘natural’ coordinate system is then given by the tangent vector to the worldline; but
the tangent vector to a curve at one point is not parallel-transported into the tangent vector

at another point. IfV μ(x) is the tangent vector to a curve at one point x,V μ(x) =
dx μ

dσ
, where σ is

some parameter along the curveC, then under parallel transport the absolute derivative ofV μ is

DV μ

dσ
¼ dV μ

dσ
þ G μ

ν� V
νV � ¼ d2x μ

dσ2
þ G μ

ν �
dxν

dσ
dx�

dσ
6¼ 0; (6:99)

assuming that C is not a geodesic – see Fig. 6.5. What is the transport law to convert a
non-rotating tangent vector into a non-rotating tangent vector? (By which is meant: a vector
whose space components are non-rotating and whose time component is tangent to the
timelike worldline.) It is Fermi–Walker transport, which will now be defined.
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The Fermi derivative of a vector V μ is

DFV μ

dσ
¼ DV μ

dσ
� Vν t μ

Dt ν

dσ
� tν

Dt μ

dσ

� �
: (6:100)

Avector is Fermi–Walker (FW) transported if
DFV μ

dσ
= 0.

�
It is Fermi transported if

DV μ

dσ
−

Vνt
μ Dtν

dσ
= 0.

�
We have to show that the tangent vector to a timelike curve is FW transported

into a tangent vector. Hence if

t μ ¼ dV μ

dσ
: t μtμ ¼ �1; (6:101)

we must show that
DFt μ

dσ
= 0. On differentiation of (6.101) we have

d
dσ

ðt μtμÞ ¼ D
dσ

ðt μtμÞ ¼ 0;

or, in an obvious notation, t μDtμ = 0. Then, continuing with this notation

DFt
μ ¼ Dt μ � t νðt μDtν � tνDt μÞ ¼ Dt μð1þ tνt

νÞ ¼ 0; (6:102)

which proves our assertion. Writing (6.100) in the form

DFV
dσ

¼ DV
dσ

� t V :
Dt
dσ

� �
þDt

dσ
ðV : t Þ; (6:103)

the Fermi–Walker transport condition is

DV
dσ

¼ t V :
Dt
dσ

� �
�Dt

dσ
ðV: tÞ: (6:104)

We shall now make use of FW transport to deal with the case of accelerated motion with
no rotation. In Section 2.2 we considered a body subjected to constant acceleration. Such a
body moves along a hyperbola in space-time given by (see (2.49))

Parallel transport Fermi–Walker transport

t μ
V μ

x μ (σ)
Timelike curveV μ = t μ

V μ = t μ

V μ = t μ

Fig. 6.5 Parallel transport and Fermi–Walker transport along a timelike curve, not a geodesic.
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x μ ¼ c2

g
sinh

gτ
c
; cosh

gτ
c
; 0; 0

� �
; (6:105)

corresponding to acceleration in the x direction. The 4-velocity is

u μ ¼ 1

c

dx μ

dτ
¼ cosh

g τ
c
; sinh

g τ
c
; 0; 0

� �
(6:106)

and the acceleration is

a μ ¼ c
du μ

dτ
¼ g sinh

g τ
c
; g cosh

g τ
c
; 0; 0

� �
: (6:107)

The 4-velocity u μ is a tangent vector to the worldline and is timelike:

u μ uμ ¼ � cosh2
g τ
c
þ sinh2

g τ
c

¼ �1; (6:108)

and a μ is orthogonal to u μ and spacelike:

a μ uμ ¼ 0; a μaμ ¼ g2ð� sinh2
gτ
c
þ cosh2

gτ
c
Þ ¼ g2: (6:109)

At any point in a 4-dimensional space-time (in this case Minkowski space-time) we may
erect a set of four mutually orthogonal vectors, one timelike and three spacelike. This is a
straightforward generalisation of the fact that in, say R3, we may erect at each point the three
mutually orthogonal basis vectors i, j, k:

i ¼ ð1; 0; 0Þ; j ¼ ð0; 1; 0Þ; k ¼ ð0; 0; 1Þ;
i : i ¼ j : j ¼ k : k ¼ 1; i : j ¼ j : k ¼ k : i ¼ 0:

Let us now put

i ¼ eð1Þ; j ¼ eð2Þ; k ¼ eð3Þ;

we now have a triad of vectors e(a). A typical component is

eðaÞi : a denotes which vector; i denotes which component of that vector:

For simplicity this may be denoted ea
i: letters from the beginning of the (Latin) alphabet tell

which vector, and from the middle of the alphabet, which component of that vector. It should
be emphasised: ea

i is a triad of vectors, not a rank 2 tensor. We may simply mimic this
exercise in Minkowski space-time. We may erect at each point a tetrad (or vierbein – four
legs) of four orthonormal vectors h(α):

hðaÞ μ : α denotes which vector; μ denotes which component of that vector (6:110)

or, for simplicity hα
μ (with letters from the beginning of the (Greek) alphabet to tell which

vector, and from the middle to tell which component). This tetrad of vectors comprises one
timelike vector and three spacelike ones. In the present context – of a particle undergoing
uniform acceleration – we may put

209 6.5 Fermi–Walker transport: tetrad formalism



hð0Þ μ ¼ u μ ¼ cosh
gτ
c
; sinh

gτ
c
; 0; 0

� �
;

hð1Þ μ ¼ 1

g
a μ ¼ sinh

gτ
c
; cosh

gτ
c
; 0; 0

� �
;

hð2Þ μ ¼ ð0; 0; 1; 0Þ;
hð3Þ μ ¼ ð0; 0; 0; 1Þ;

(6:111)

obeying

hð0Þ μ hð0Þ μ ¼ �1 ¼ η00;

hð1Þ μ hð1Þ μ ¼ þ1 ¼ η11;

hð2Þ μ hð2Þ μ ¼ þ1 ¼ η22;

hð3Þ μ hð3Þ μ ¼ þ1 ¼ η33;

hðαÞ μ hðβÞ μ ¼ 0; α 6¼ β;

or

hðαÞ μ hðβÞ μ ¼ ηαβ; (6:112)

or, indeed

ημν hðαÞ
μ hðβÞν ¼ ηα β: (6:113)

This relation holds in Minkowski space but its significance is perhaps more clearly seen if
we generalise to an arbitrary Riemannian space with metric gμν. Then (6.113) is replaced by

gμν hðαÞ μ hðβÞν ¼ ηα β: (6:114)

The indices μ and ν are world indices: at each point (x μ) of the space we can erect a tetrad
h(α)

μ (α = 0, 1, 2, 3) obeying (6.114). The indices α and β are, on the other hand, tangent
space indices. The erection of a local frame at any point in an arbitrary space-time is an
expression of the Equivalence Principle – the locally inertial frame has a Minkowski metric
tensor.

As long as gμν is non-singular we may define the ‘inverse’ of h(α)
μ, denoted h(α)μ, by

gμν ¼ hðαÞμhðβÞνηα β;

or, more precisely,

gμνðxÞ ¼ hðαÞμðxÞ hðβÞνðxÞ ηα β: (6:115)

It turns out that tetrads are an essential device to express the Dirac equation (for spin
½ particles) in a general Riemannian space-time – see Section 11.4 below.

Let us now return to the connection between FW transport and accelerating frames.
We want to define a tetrad which an observer, subject to an acceleration, carries with her, and
which defines a set of orthonormal basis vectors forming a rest-frame (so that h(0) = u, a
tangent to the world-line), and the tetrad is non-rotating. Now rotation in non-relativistic
physics is given by
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dνi

dt
¼ �Ωi

kν
k ; Ωi k ¼ �Ωk i: (6:116)

This is easily generalised to four dimensions:

dν μ

dt
¼ �Ω μ

ν ν
ν; Ω μν ¼ �Ω ν μ: (6:117)

It is clear that this leaves the length of the vector v μ unchanged:

d
dτ

ð νμνμÞ ¼ 2
dνμ

dτ
νμ ¼ �2Ω μν νμνν ¼ 0:

The tensor Ω μν has six components, corresponding to the generators of the Lorentz group
(including rotations). We now claim that the expression for Ω μν giving (a) the correct
Lorentz transformation appropriate to an acceleration, and (b) no (spatial) rotation, is

Ω μν ¼ a μuν � aνu μ: (6:118)

To show that (a) holds, let us calculate
du μ

dτ
from (6.117):

du μ

dτ
¼ �ða μuν � aνu μÞ uν ¼ �a μðuνuνÞ þ u μðaνuνÞ ¼ a μ;

as desired, and where (6.108) and (6.109) have been used. To show (b) consider a spacelike
vector W μ, orthogonal to a μ (and to u μ), so that

Ω μνWν ¼ a μðuνWνÞ � u μðaνWνÞ ¼ 0

and hence

dW μ

dτ
¼ 0; (6:119)

there is no rotation of W μ. For a general vector V μ (6.117) and (6.118) give

dV μ

dτ
¼ �ða μuν � aνu μÞVν ¼ u μða : VÞ � a μðu : VÞ (6:120)

which is the law of FW transport – see (6.104) with t = u, Dt = a. Hence Fermi–Walker
transport of a vector describes the propagation of a frame that is accelerating but not rotating,
and is therefore described by a triad of three orthogonal gyroscopes and a timelike vector
(the 4-velocity) orthogonal to the triad.

6.6 Lie derivatives, Killing vectors and groups of motion

Consider the Schwarzschild solution. It has a very high degree of symmetry, being spheri-
cally symmetric and static. It was just these features that made it possible for us to find the
form of the Schwarzschild metric, by working in a coordinate system designed for the
symmetry we wanted – spherical polar coordinates and a simple time coordinate, with no
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terms in dxi dt. We could, however, if we were perverse, re-express the Schwarzschild solution
in a very different coordinate system – say, for example, confocal ellipsoidal coordinates, and
a ‘time’ coordinate that mixed up our previous t with a space coordinate. The Schwarzschild
metric would then look fairly unpleasant, and the symmetry that it still possessed would not be
at all obvious. The whole spirit of General Relativity, of course, is that coordinate systems do
not matter – they have no intrinsic significance – so the question then arises, is there a way of
treating the Schwarzschild solution in a coordinate-independent manner; in other words, to
express its symmetry in such a way? The answer is that there is such a method of approach-
ing matters of symmetry in General Relativity and it is based on the notion of Lie derivatives.
This section is devoted to this topic, which, as well as helping to understand the Schwarzschild
solution, is of great use in cosmology, which is treated in Chapter 10.

If a space possesses a symmetry of some sort this means that it has some property
(usually some property of the metric tensor) which is the ‘same’ at different points of the
space. We therefore have to have a means of comparing two points in the space (for our
purposes, a space-time, but I use the word ‘space’ for simplicity and generality). To make this
comparison, let us introduce a vector field allowing us to pass from one point to another one.
If a vector field a μ(x) is defined on amanifold we can use it to define the coordinates of nearby
points. For example, referring to Fig. 6.6, P has coordinates x μ and �P has coordinates �x μ then

�x μ ¼ x μ � ε a μðxÞ; (6:121)

where ε is infinitesimal. This is a change of point, not of label. The vector field a μ then maps
P onto �P, i.e. maps the manifold onto itself. It also maps geometric objects defined on the
manifold into similar geometric objects; for example vectors onto vectors. If V μ(x) is a
vector field, then

�V μð�xÞ ¼ ∂�x μ

∂xν
V νðxÞ ¼ ðδμ

ν � ε a μ
νÞV νðxÞ ¼ V μðxÞ � ε a μ

;ν V
νðxÞ: (6:122)

(This transformation law refers either to a change of label or to a change of point, but our
present considerations are focussed on a change of point.) The quantity �V μð�xÞ − V μ(x) is, as
the reader will appreciate, not a vector, since it is the difference between two vectors at
different points, so we expand �V μð�xÞ:

�V μð�xÞ ¼ �V μð�xÞ þ ð�x� xÞν �V μ
;ν ðxÞ þ � � � ¼ �V μðxÞ � ε aν �V μ

;ν þOðε2Þ;

P

P

a μ

Fig. 6.6 The vector field a μ maps the point P onto the point �P.
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then together with (6.101),

V μðxÞ ¼ �V μðxÞ � ε aν �V μ
;ν þ ε a μ

;ν V
ν þOðε2Þ

and

lim
ε!0

V μðxÞ � �V μðxÞ
ε

� �
¼ lim

ε!0
ð�aν �V μ

;ν þ a μ
;ν V

νÞ ¼ �aν V μ
;ν þ a μ

;ν V
ν:

This is the Lie derivative of V with respect to a:

ðLa VÞ μ ¼ � ∂V μ

∂xν
aν þ ∂a μ

∂xν
V ν; (6:123)

or

La V
μ ¼ �V μ

;ν a
ν þ V ν a μ

;ν: (6:124)

Analogous formulae for covariant vectors and tensors follow, for example

La Vμ ¼ Vμ;ν a
ν þ Vν a

ν
; μ; (6:125)

La gμν ¼ gμ λ a
λ
;ν þ gλ ν a

λ
;μ þ gμν ;λ a

λ: (6:126)

It is clear that the Lie derivatives are defined without the use of affine connections (con-
nection coefficients), so the formulae above do not involve Christoffel symbols.
Nevertheless similar formulae to the above hold, which feature covariant, rather than
ordinary, derivatives. We have, for example,

V μ
;ν a

ν � V ν a μ
;ν ¼ V μ

;ν a
ν � V ν a μ

; ν þ V � aλðG μ
� λ � G μ

λ�Þ
and the last term vanishes in a space with no torsion (in a holonomic basis). Hence Equations
(6.124)–(6.126) yield

La V
μ ¼ �V μ

;ν a
ν þ V ν a μ

;ν; (6:127)

La Vμ ¼ Vμ;ν a
ν þ Vν a

ν
;μ; (6:128)

La gμν ¼ gμ λ a
λ
;ν þ gλ ν a

λ
; μ; (6:129)

where in the last equation we have used the fact that the covariant derivative of the metric
tensor vanishes. It is clear that the Lie derivatives of tensors are tensors.

Let us now expresss the above in coordinate-free notation. We put

V ¼ V μ eμ ; A ¼ aν eν: (6:130)

In a coordinate basis eμ= ∂
∂xμ

, eν= ∂
∂xν

and it is easy to see that

½A ; V� ¼ ðaν V μ
;ν � V ν a μ

;νÞ;
which is the right hand side of (6.124), which therefore becomes, in coordinate-free notation
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LA V ¼ ½A ; V�; (6:131)

a Lie bracket appears in the definition of a Lie derivative! (An equation involving Lie
brackets has already been quoted above – see (3.10)). In a similar way Equation (6.128),
when expressed in intrinsic notation, would involve the Lie derivative of a 1-form.

We now turn our attention to symmetries, and remark that particular types of vector fields
are invariant under particular symmetry operations. For example, referring to the three dia-
grams in Fig. 6.7, (a) is invariant under any translation, (b) is invariant under translations in the x
direction, and (c) is invariant under rotations. These are statements that particular Lie derivatives
vanish, LA V=0, where V is the vector field above and A is the generator of the relevant
transformation (or motion, as it is sometimes called). To see this, consider the diagrams in turn:

(a)

(c)

(b)

Fig. 6.7 Three vector fields, invariant under particular symmetries – see text.
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(a) V = ai+ bj= a ∂
∂x

+ b ∂
∂y

. An arbitrary translation is A = f ∂
∂x

+ g ∂
∂y

, where f and g are

constants. Clearly

a
∂
∂x

þ b
∂
∂y

; f
∂
∂x

þ g
∂
∂y

� �
¼ 0;

i.e.

LAV ¼ ½A;V� ¼ 0:

(b) V = y = yj = y
∂
∂y

. A translation in the x direction is a
∂
∂x
:

a
∂
∂x

; y
∂
∂y

� �
¼ 0:

(c) V = r = rer = r

�
cos� ∂

∂x
+ sin� ∂

∂y

�
= x ∂

∂x
+ y ∂

∂y
. The generator of rotations is

∂
∂�

=

− y
∂
∂x

+ x
∂
∂y

. It is easily proved that

�y
∂
∂x

þ x
∂
∂y

; x
∂
∂x

þ y
∂
∂y

� �
f ðx; yÞ ¼ 0;

where f is any function of x and y.

Now consider not a vector field, as in (a), (b) or (c) above, but space or space-time, given
by a metric. We want to know what symmetries it possesses, so we find the vector fields for
which the Lie derivatives of the metric tensor vanish. Such symmetries are isometries. If the
vector field is denoted ξ then the condition for an isometry is Lξ gμν= 0, i.e.

�μ;v þ �v;μ ¼ 0; (6:132)

or equivalently

gμv;λ �
λ þ gμ λ �

λ
;v þ gλ v �

λ
;μ ¼ 0: (6:133)

Such vectors are called Killing vectors. In any given space there is a relation between its
Killing vectors and its curvature tensor. For any vector ξ we have (see (4.59))

�μ;�; λ � �μ; λ;� ¼ Rρ
μ� λ �ρ ¼ Rρμ� λ �

ρ: (6:134)

It follows that

ð�μ; v��v; μÞ;� þ ð��; μ � �μ;�Þ;v þ ð�v;� � ��; vÞ; μ
¼ ðRρμv� þ Rρv� μ þ Rρ� μvÞ �ρ
¼ 0; (6:135)

where we have used (4.34iv). Then the Killing condition (6.132) implies that

�μ; v;� þ ��; μ; v þ �v;�; μ ¼ 0;

i.e., using (6.132) again

�μ; v;� � �μ;�; v � ��; v; μ ¼ 0;
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so, appealing to (6.134)

��; v; μ ¼ Rρ
μv k �ρ: (6:136)

Spaces endowed with a ‘symmetry’ will possess corresponding Killing vectors – the
more symmetry, the more vectors. Let us find the Killing vectors for a familiar space, R3,

ds2 ¼ dx2 þ dy2 þ dz2;

in Cartesian coordinates. Its Killing vectors, denoted ξi, obey (6.132) and (6.136).
In this space Ri

jkl = 0 and in Cartesian coordinates the connection coefficients vanish,
so (6.136) gives

�i;k;l ¼ 0;

hence

�i;k ¼ βi k ¼ const ðβi k ¼ �βk iÞ
and

�i ¼ βi k x
k þ αi:

There are three constants βik and three constants αi so there are six Killing vectors,
corresponding to different choices of αi and βik.

(1) α = (1, 0, 0), βik= 0, ξ
(1) = (1, 0, 0)

�
i.e. ξ (1)

1 = 1, ξ
(1)

2 = ξ
(1)

3 = 0
�

(2) α = (0, 1, 0), βik= 0, ξ
(2) = (0, 1, 0)

(3) α = (0, 0, 1), βik= 0, ξ
(3) = (0, 0, 1)

(4) α = (0, 0, 0), β12 = β13 = 0, β 23 =−1 =−β32,
ξ (4)

1 = 0, ξ
(4)

2 =− z, ξ (4)
3 = y, ξ

(4) = (0, − z, y)
(5) α = (0, 0, 0), β13 = 1, β12 = β23 = 0, ξ

(5) = (z, 0, −x)
(6) α = (0, 0, 0), β12 =−1, β13 = β23 = 0, ξ

(6) = (−y, x, 0).

6.6.1 Groups of motion

From these (Killing) vectors we may construct the operators

Xa ¼ �ðaÞi
∂
∂xi

: (6:137)

Continuing with the example of the space R3 we then have

X1 ¼ ∂
∂x

; X2 ¼ ∂
∂y

; X3 ¼ ∂
∂z

;

X4 ¼ �z
∂
∂y

þ y
∂
∂z

; X5 ¼ z
∂
∂x

� x
∂
∂z

; X6 ¼ �y
∂
∂x

þ x
∂
∂y

;

(6:138)

which obey the relations

½X4;X5� ¼ �X6 and cyclic perms on ð4; 5; 6Þ: (6:139)
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Relabelling these latter three operators,

J1 ¼ �iX4 ¼ �i y
∂
∂z

� z
∂
∂y

� �
;

J2 ¼ �iX5 ¼ �i z
∂
∂x

� x
∂
∂z

� �
;

J3 ¼ �iX6 ¼ �i x
∂
∂y

� y
∂
∂x

� �
;

(6:140)

gives the commutation relations

½J1; J2� ¼ i J3 and cyclic; (6:141)

which are those of SU(2). In addition, relabelling the operators X1 to X3,

P1 ¼ iX1 ¼ i
∂
∂x

; P2 ¼ iX2 ¼ i
∂
∂y

; P3 ¼ iX3 ¼ i
∂
∂z

;

gives (i, k = 1, 2, 3)

½Pi; Pk � ¼ 0; (6:142)

as well as

½P1; J2� ¼ iP3 and cyclic; ½Pi; Ji� ¼ 0: (6:143)

These commutation relations (6.141)–(6.143) will be recognised as those of the groups of
rotations and translations, so we find the result that the group of motions (isometry group) of
R3 is the group of rotations and translations in three dimensions. The rotation subgroup is
non-abelian, the translation subgroup abelian, and rotations and translations do not com-
mute with each other. Up to a factor ħ these of course are the generators of rotations and
translations in quantum mechanics. This might at first seem a bizarre coincidence, since the
subject of General Relativity would seem a million miles from quantum mechanics; but
actually the finding is not completely surprising since the whole philosophy of quantum
mechanics is that observables are represented by operators which operate directly on a linear
vector space. In our present considerations we have the same apparatus of generators of
symmetries of a space, but the space concerned is some space or space-time, not a Hilbert
space of a quantum system.

As a second example of groups of motion, consider the sphere S2. It has line element

ds2 ¼ dθ2 þ sin2θ d�2;

and with x1 = θ, x2 =� we have

gik ¼ 1 0
0 sin2θ

� �
:

Equation (6.133) gives for the Killing vectors ξ i

gi k;m �m þ gim �m; k þg k m�
m; i ¼ 0:
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Now take special values for i, k:

i ¼ k ¼ 1 : �1; 1 ¼ 0; ðiÞ
i ¼ k ¼ 2 : 2 sin θ cos θ �1 þ 2 sin2θ� 2

; 2 ¼ 0

) cos θ �1 þ sin θ �2;2 ¼ 0; ðiiÞ
i ¼ 1; k ¼ 2 : sin2θ � 2

;1 þ �1;2 ¼ 0: ðiiiÞ

These equations yield

ðiÞ ! �1 ¼ Asinð�þ�0Þ;
ðiiÞ ! �2 ¼ Acot θ cosð�þ�0ÞþBðθÞ;
ðiiiÞ ! B0ðθÞ sin2θ ¼ 0 ) B ¼ const:

So the Killing vectors are

� ¼ ð�1; �2Þ;
�1 ¼ Asinð�þ�0Þ; �2 ¼ Acot θ cosð�þ�0Þ þ B:

There are three constants of integration (A, B, �0), and so three Killing vectors, which we
can now find.

�0 ¼ 0; A ¼ 1; B ¼ 0: �ð1Þ ¼ ðsin�; cot θ cos�Þ
�0 ¼ π=2; A ¼ 1; B ¼ 0: �ð2Þ ¼ ðcos�; � cot θ cos�Þ
A ¼ 0; B ¼ 1: �ð3Þ ¼ ð0; 1Þ:

We now construct the operators (6.137), to find

X1 ¼ sin�
∂
∂θ

þ cot θ cos�
∂
∂�

;

X2 ¼ cos�
∂
∂θ

� cot� sin�
∂
∂�

;

X3 ¼ ∂
∂�

;

which obey

½Xi; Xk � ¼ ε i k m Xm;

and so generate SU(2): the group of motions of the sphere S2 is SU(2). This 2-dimensional
space has three Killing vectors. The plane R2 also has three Killing vectors; by a simplified
version of the calculation above they are

X1 ¼ ∂
∂x

; X2 ¼ ∂
∂y

; X3 ¼ x
∂
∂y

� y
∂
∂x

;
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two translations and one rotation. Note that

rotation symmetry ! isotropy

translation symmetry ! homogeneity

of a space or space-time.
It can be shown that the maximum number of Killing vectors of a space of dimensionality

n is
nðnþ 1Þ

2
.11 A space with this maximal number is called maximally symmetric. R2, S2

and R3 are maximally symmetric spaces. So is Minkowski space-time, with 10 Killing
vectors (see Problem 6.1).

The apparatus of Killing vectors and groups of motion provides a suitable language in
which to discuss the symmetry properties of a space. This will be taken up again in the study
of cosmological space-times, in Chapter 10. The present chapter ends, however, with a
consideration of static and stationary space-times – symmetries with respect to time
translation.

6.7 Static and stationary space-times

Consider the Schwarzschild metric (5.37)

ds2 ¼ � 1� 2m

r

� �
c2 dt2 þ 1� 2m

r

� ��1

dr2 þ r2ðdθ2 þ sin2θ d�2Þ (6:144)

in which m =
MG

c2
. With (x0, x1, x2, x3) = (ct, r, θ, �) the metric tensor components are

g00 ¼ � 1� 2m

r

� �
; g11 ¼ 1� 2m

r

� ��1

; g22 ¼ r2; g33 ¼ r2 sin2θ

gμν ¼ 0; μ 6¼ ν:

(6:145)

In contrast consider what we may call the Lense–Thirring metric (6.48)

ds2 ¼ � 1� 2m

r

� �
c2 dt2 þ 1� 2m

r

� �
ðdx2 þ dy2 þ dz2Þ þ 2ζ iðc dtÞdxi (6:146)

or, with (x0, x1, x2, x3) = (ct, x, y, z),

g00 ¼ � 1� 2m

r

� �
; g11 ¼ g22 ¼ g33 ¼ 1� 2m

r

� �
;

g0i ¼ ζ i ¼
2G

r3c3
εi k m x k Jm :

(6:147)

The first metric is static, the second one stationary. Imagine photographing the source of
the field. For a star rotating with constant angular velocity the motion of the particles within

11 See for example Weinberg (1972), Chapter 13.
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the source is the same at all times, and the metric shares this property. A naive definition of a
stationary space-time is that gμν is independent of t, or

∂
∂t
gμν ¼ gμν ;0 ¼ 0: (6:148)

A static space-time has the further property

g 0i ¼ 0: (6:149)

Both of these conditions, however, refer to a particular coordinate system, so we must
reformulate them in an invariant, or geometric language. We begin with stationary space-
times, and use the language of Killing vectors.

Suppose a space-time possesses a Killing vector K = K μ eμ which is timelike

K μ Kμ 5 0: (6:150)

Then there is a coordinate system in which K μ = (1, 0), i.e. K μ= δμ0. Since K is a Killing
vector LK gμν= 0 or, from (6.126)

LK gμν ¼ gμ λ K
λ
;ν þ gλ ν K

λ
;μ þ gμν ;λ K

λ ¼ 0: (6:151)

In the coordinate system K μ= δμ0 this becomes

gμν; λ K
λ ¼ gμν; 0 ¼ 0;

as in (6.148) above. Hence

A stationary space-time is onewhich posseses a timelike Killing vector: (6:152)

Moreoever, in the frame K μ= δμ0, in a coordinate basis, we have

K ¼ 1

c

∂
∂t
: (6:153)

A static space-time has a further restriction: g0i= 0. We must find an invariant character-
isation of this condition. Space-time is a 4-dimensional manifold and we may consider 3-
dimensional ‘hypersurfaces’ in it characterised by t = const, where t is, in some coordinate
system, time. These hypersurfaces will be spacelike: the invariant separation between any
two points (‘events’) (t, x1, y1, z1) and (t, x2, y2, z2) is spacelike. Let the equation of the
hypersurface be f (x μ) = a = const (which can be recast as t = const). Then consider two
points, at x μ and x μ+ dx μ, in the hypersurface (see Fig. 6.8). We have

a ¼ f ðx μÞ ¼ f ðx μ þ dx μÞ ¼ f ðx μÞ þ ∂f
∂x μ

dx μ;

hence
∂f
∂x μ

dx μ = 0, so the gradient vector

nμ ¼ ∂f
∂x μ

¼ ∂μf (6:154)

is orthogonal to dx μ (which is here a vector, not a 1-form!)

nμ dx μ ¼ gμv n
μ dxv ¼ 0; (6:155)
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and hence to the surface, as shown in Fig. 6.8. n μ is a normal vector field. Now our claim is
that a space-time is static if the Killing vector K is proportional to n at each point – that the
Killing vector is not only timelike but also hypersurface-orthogonal. Such a vector would be
of the form

X ¼ λðxÞ n; X μ ¼ λðxÞ n μ; (6:156)

or, in view of (6.154),

Xμ ¼ λðxÞ ∂μf ¼ λðxÞf;μ: (6:157)

To prove this is slightly long. First observe that from this last equation it follows that

XρXμ; v ¼ λ λ; v f; μ f; ρ þ λ2 f; μv f;ρ (6:158)

and then, taking the completely antisymmetric part of this (see (3.51)) it follows straight-
forwardly that

X½ρ Xμ; v� ¼ 0 (6:159)

(which can easily be seen by noting that the first term is symmetric under μ ↔ ρ and the
second symmetric under μ ↔ ν). The reader may also verify that the same condition holds,
by virtue of the symmetry under μ ↔ ν of Γσμν, when ordinary derivatives are replaced by
covariant ones, i.e.

X½ρ Xμ; v� ¼ 0: (6:160)

We have now shown that a hypersurface-orthogonal vector satisfies (6.160); in other words,
that (6.156) implies (6.160). But the converse does not hold; (6.160) does not imply (6.156).
We shall, however, now show that (6.160) together with (6.151) does imply (6.156): a Killing
vector field obeying (6.160) is hypersurface orthogonal. Equation (6.160) written out in full is

XρXμ; v þ Xμ Xv; ρ þ Xv Xρ; μ � XρXv; μ � Xv Xμ; ρ � Xμ Xρ; v ¼ 0: (6:161)

n

x  μ

x  μ + dx  μ

dx  μ
Spacelike hypersurface

f(x  μ ) = a = const
(t = const)

Particle world-lines

Fig. 6.8 Particle world-lines and a spacelike hypersurface. The vector n is normal to the hypersurface.

221 6.7 Static and stationary space-times



Now, if X is a Killing vector

Xμ; v þ Xv; μ ¼ 0; (6:162)

which reduces (6.161) to

Xρ Xμ; v þ Xμ Xv; ρ þ Xv Xρ; μ ¼ 0:

Multiplying this by Xν gives

Xρ X
v Xμ; v þ Xμ X

v Xv; ρ þ ðX 2ÞXρ; μ ¼ 0;

or, in virtue of (6.162),

Xμ X
v Xv; ρ � XρX

v Xv; μ þ ðX 2ÞXρ; μ ¼ 0:

Exchanging upper and lower indices and rewriting the last term gives

Xμ Xv X
v
; ρ � XρXv X

v
; μ � ðX 2ÞXμ ; ρ ¼ 0:

Adding the last two equations gives

XμðX 2Þ; ρ � XρðX 2Þ; μ þ X 2ðXρ; μ � Xμ; ρÞ ¼ 0:

Replacing covariant derivatives by ordinary ones (a valid operation here) gives

Xμ ∂ρðX 2Þ � Xρ∂μðX 2Þ þ X 2ð∂μXρ � ∂ρXμÞ ¼ 0;

or

Xμ ∂ρðX 2Þ � X 2 ∂ρXμ ¼ Xρ∂μðX 2Þ � X 2 ∂μXρ: (6:163)

Now

∂ρ
Xμ

X 2

� �
¼ 1

X 2
∂ρXμ � 1

X 4
Xμ ∂ρðX 2Þ;

so dividing (6.163) by X 4 gives

∂ρ
Xμ

X 2

� �
¼ ∂μ

Xρ

X 2

� �
: (6:164)

(Note that X 2≠ 0; X is a timelike Killing vector.) Hence
Xμ

X 2
is the gradient of some scalar

field f

Xμ

X 2
¼ ∂μ f ; Xμ ¼ X 2∂μ f ;

which is (6.157) with λ=X2: the hypersurface orthogonality condition. We have shown that
a Killing vector field obeying (6.160) is hypersurface orthogonal. We have, finally, to show
that this condition of hypersurface orthogonality implies that the space-time is static.

We have seen that in a stationary space-time theKilling vector is, in some coordinate system

K μ ¼ ð1; 0Þ;
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hence Kμ=gμνK
ν=gμ0 and

K2 ¼ K μKμ ¼ K0K0 ¼ g00:

We also have the hypersurface orthogonality condition Kμ =K
2∂μ f (x). With μ = 0 this gives

g00 ¼ g00 ∂0f ;

hence ∂0 f = 1 and

f ðxÞ ¼ x0 þ hðxiÞ:
With μ = i, on the other hand, we find

gi 0 ¼ g00 ∂i f ¼ g00 ∂ih: (6:165)

Now perform a coordinate transformation

x0 ! x00 ¼ x0 þ hðxiÞ; xi ! x0i ¼ xi

with inverse

x0 ¼ x00 � h ðxiÞ; xi ¼ x0i:

Under this transformation the Killing vector is unchanged:

K 0 μ ¼ ∂x0 μ

∂xv
Kv ¼ ∂x0 μ

∂x0
) K 00 ¼ 1; K 0i ¼ 0; K0 ¼ ð1; 0Þ:

The metric tensor transforms as follows:

g000 ¼
∂xρ

∂x00
∂xσ

∂x00
gρσ ¼ g00; (6:166)

and

g00 i ¼
∂xρ

∂x00
∂xσ

∂x0i
gρσ ¼ ∂xσ

∂x0i
g0 σ ¼ ∂x0

∂x0i
g00 þ ∂xm

∂x0i
g0m

¼ ð�∂i hÞ g00 þ g0 i
¼ 0; (6:167)

where in the last stepwe have used (6.165). Equation (6.167) is the condition for a static space-
time, as noted in (6.149). We conclude that a space-time is static if it admits a hypersurface-
orthogonal (timelike) Killing vector field; and in a static space-time there exists a coordinate
system in which g0i= 0. Hence there are no mixed terms dxi dt in the expression for ds2.

6.8 Killing vectors and conservation laws

We conclude this chapter by noting a general result, which will be of use in later chapters,
that connects symmetries of the metric tensor with conservation laws, for particles moving
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along a geodesic. The result is straightforward to derive. The Killing vector ξμ associated
with a metric isometry obeys Equation (6.132)

�μ; v þ �v; μ ¼ 0;

which we write in the form

Δ

v�μ þ Δ

μ�v ¼ 0; (6:168)

using the symbol ∇ for absolute, or covariant, derivative, as introduced in Chapter 3. If,
now, a particle moves along a geodesic γ, with tangent vector u μ, then since the geodesic is
an autoparallel curve, we have from (4.6) ∇νu

μ= 0, hence

uv

Δ

vu
μ ¼ 0: (6:169)

Then

uλ

Δ

λðx : uÞ ¼ uλ

Δ

λð�μu μÞ ¼ uλ u μ Δ

λ�μ þ �μ u
λ Δ

λu
μ:

These terms vanish separately; the first by virtue of (6.168) and the second from (6.169). We
therefore have

Δ

λðx : uÞ ¼ 0 ) x : u ¼ const: (6:170)

This is the conservation law. It is instructive to see how it operates in particular situations.
Consider first the case of a particle moving along a straight line (geodesic) in 3-dimensional
Euclidean space. The metric is, in Cartesian coordinates,

gi j ¼
1 0 0
0 1 0
0 0 1

0
@

1
A:

Choosing the direction of motion to be the x axis, the tangent vector is
dx
dt

= ux and the
velocity is u = (ux, 0, 0). The metric above is clearly invariant under displacements along the
x axis, so the Killing vector is

z ¼ ∂
∂x

¼ ð1; 0; 0Þ

and the conservation law (6.170) is

z : u ¼ ux ¼ const;

or equivalentlymux = px = const, conservation of momentum –Newton’s first law of motion.
As a second example, let us stay in 3-dimensional Euclidean space, but now consider a
particle moving in a central field of force. As we know, such particles move in a plane, so we
may take that to be the equatorial plane θ = π/2 and the metric tensor is, in spherical polars,

gi j ¼
1 0 0
0 r2 0
0 0 r2 sin2θ

0
@

1
A:
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This is independent of �;
∂gij
∂�

= 0 , and the Killing vector is

x ¼ ∂
∂�

¼ ð0; 0; 1Þ

in coordinates (x1, x2, x3) = (r, θ, �). The tangent vector to the geodesic is ui =
dxi

dt
and the

conserved quantity is (recalling that θ = π/2)

x : u ¼ gi k �
iuk ¼ g33 u

3 ¼ r2 _� ¼ l;

angular momentum – or rather, angular momentum per unit mass. Then conservation of
angular momentum follows from isometry of the metric tensor under change of azimuthal
angle (‘rotation’), just as, in the previous example, conservation of linear momentum
followed from isometry of the metric under translations in space.

It is interesting to note the difference between these arguments, connecting invariance
under space translations and rotations with conservation of linear and angular momentum,
with what for many physics students is the more standard argument, cast in the language of
quantum theory, which connects these fundamental ideas. The above argument is couched in
purely geometric language, connecting a symmetry of the metric with a conservation law for
a particle moving along a geodesic. In the quantum theory approach the connection is made
between a symmetry in coordinate space and the generator of this symmetry as an operator
in Hilbert space; for example the momentum operator in Hilbert space is the generator of
translations in coordinate space.

Further reading

The Lense–Thirring effect originates in Thirring & Lense (1918), of which an English
translation appears in Mashhoon, Hehl & Theiss (1984). A good account of the precession
of gyroscopes appears (in French) in Tonnelat (1964), and good accounts of Lense–Thirring
precession are to be found in Ciufolini & Wheeler (1995) and Lämmerzahl & Neugebauer
(2001). Schiff’s suggestion of searching for the Lense-Thirring effect in a gyroscope
experiment appears in Schiff (1960); see also Schiff (1939).

Detailed descriptions of the Gravity Probe B experiment appear in Everitt et al. (2001), in
Ciufolini & Wheeler (1995) and in Fairbank et al. (1988). This last reference comprises
seven separate articles on The Stanford Relativity Gyroscope Experiment by: C.W. F. Everitt
(History and overview), J.A. Lipa & G.M. Keiser (Gyroscope development), J. T. Anderson
(London moment readout of the gyroscope), J. P. Turneaure, E.A. Cornell, P. D. Levine &
J.A. Lipa (Ultrahigh vacuum techniques for the experiment), R.A. Van Patten (Flight gyro
suspension system), J.V. Breakwell (Correction to the predicted geodetic precession of the
gyroscope resulting from the Earth’s oblateness) and D.B. DeBra (Translation and orientation
control). For up-to-date information on the Gravity Probe B experiment consult http://www.
gravityprobeb.com, or http://einstein.stanford.edu. Further arguments for and against Mach’s
principle in the context of the Lense–Thirring effect can be found in Rindler (1994), Ciufolini
(1995) and Bondi & Samuel (1997).
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A thorough discussion of gravitomagnetism appears in Ciufolini & Wheeler (1995),
Chapter 6, and a more recent review is Ruggiero & Tartaglia (2002). See also Mashhoon
(1993). The gravitomagnetic clock effect is discussed by Bonnor & Steadman (1999),
Mashhoon & Santos (2000), Mashhoon et al. (2001), Ruggiero & Tartaglia (2002) and
Tartaglia (2002).

Good expositions of Lie derivatives and Killing vectors may be found in Robertson &
Noonan (1968), Chapter 13 and Schutz (1980), Chapter 3.More mathematical accounts may
be found in Lichnérowicz (1958), Wald (1984), Appendix C andMartin (1991), Section 7.7.

An elegant account of static and stationary space-times may be found in Rindler (2001),
Chapter 9.

Problems

6.1 Show that

D� r
r3

� J
n o

¼ J
r3

� 3ðJ : rÞr
r5

as in (6.60) above, and

v� D1
r

� �
¼ 1

r3
r� v:

6.2 Prove Equation (6.93).
6.3 Show that the group of motions of Minkowski space-time is the inhomogeneous

Lorentz group (= Poincaré group).
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7 Gravitational collapse and black holes

Black is black. It’s mysterious.

Ellsworth Kelly
American artist

(Television interview with Nicholas Glass, 20 March 2006)

A striking feature of the vacuum Schwarzschild metric, as seen in Chapter 5, is the surface
r = 2m. In the case of the Sun, 2m= 2.95 km and this surface is inside the Sun, where in any
case the vacuum field equations do not apply. This might encourage the belief that any
problems posed by the Schwarzschild surface were unreal and unphysical. We also noted in
Chapter 5 that, if there were any circumstances in which the Schwarzschild surface were
outside the material of a star, the time taken for an object falling radially into the star to reach
this surface would be infinite, so the region r< 2m is ‘out of bounds’, at least in this
coordinate system. These considerations suggest two questions: first, are there any circum-
stances in which ‘stars’ might actually be confined to the region r< 2m; and second, if so,
how do we investigate this region mathematically?

The twentieth century has seen spectacular progress in astrophysics. From the work of
Bethe1 onwards we know that star light is produced by nuclear fusion reactions, the simplest
of which is

pþ n ! dþ γ:

The deuteron is a proton–neutron bound state and consequently has a smaller mass than the
combined masses of these particles, the ‘missing’mass appearing as the energy of the photon
γ. The pressure exerted by these photons, both directly, as radiation pressure, and indirectly, as
thermal pressure, is what keeps the star in equilibrium, balancing the inward gravitational pull.
The reaction above is only the first of many; after deuterium, heavier elements in the periodic
table are produced – lithium, beryllium, and so on, through carbon to iron. At each stage the
nucleus on the right hand side has a greater binding energy per nucleon than that on the left, so
a mass defect is converted into energy, emitted as a photon of light.When, however, the centre
of a star becomes dominated by iron, the fusion reactions producing heavier elements are no
longer exothermic. Iron has the greatest binding energy per nucleon of all the chemical
elements so the subsequent fusion reactions do not emit light. The star begins to cool, the
thermal pressure to drop and, as first realised by Oppenheimer, Snyder and Volkoff,2 this will
result in gravitational collapse at the end-point of thermonuclear evolution. How far does the
star collapse? There are two states of possible equilibrium, in which the gravitational inward

1 Bethe (1939).
2 Oppenheimer & Snyder (1939), Oppenheimer & Volkoff (1939).



pressure is balanced by the Fermi pressure, of either electrons or neutrons; these configu-
rations are known respectively aswhite dwarfs and neutron stars. In retrospect, this crucial role
played by quantum theory in the physics of stars is one of the most surprising aspects of the
whole subject. Detailed consideration of these equilibrium states enabled Chandrasekhar to
show that for these configurations there is a limiting mass – the so-called Chandrasekhar
mass – above which equilibrium is no longer possible.3 It was in the 1960s that these
considerations began to be taken seriously: the discovery of quasars, and especially of pulsars,
played a key role in persuading physicists that a proper consideration of gravitational collapse
was crucial in understanding these objects, and from that timeGeneral Relativity could be said
to have entered physics proper, having previously been largely a pursuit of applied mathema-
ticians. A consequence of the Chandrasekhar limit is that for heavier collapsing stars (for
example the collapse of a star with a mass 10 times that of the Sun) there is no equilibrium
configuration. There is simply continued collapse, which will inevitably result in the stellar
material – or more properly some fraction of it – being confined eventually to a region r< 2m.
This state was christened by Wheeler a ‘black hole’.

This chapter begins with a consideration of the internal Schwarzschild solution – the
space-time metric inside a spherically symmetric and static star – and goes on to treat white
dwarfs and neutron stars. We continue on to the investigation of rotating black holes (the
Kerr solution) and finish with brief accounts of the thermodynamics of black holes,
Hawking radiation and some associated matters.4

7.1 The interior Schwarzschild solution and the
Tolman–Oppenheimer–Volkoff equation

Wewant to set up the general relativistic equations for computing the pressure and density of
matter in a spherically symmetric, static star. In Chapter 5 we found the Schwarzschild
solution that describes the space-time outside such a star. We are now concerned with a
solution for the stellar interior.5 Since we are assuming spherical symmetry the metric will
be of the form

ds2 ¼ �e2vðrÞc2 dt2 þ e2λðrÞ dr2 þ r2ðdθ2 þ sin2θ d�2Þ;
gμv ¼ 0 ðμ 6¼ vÞ: (7:1)

The two unknown functions ν(r) and λ(r) will not turn out to be the same as in Chapter 5,
since they must satisfy the field equations inside the star. For this we need the energy-
momentum tensor for the stellar material, which is taken to be a perfect fluid. Let us recall
that the energy-momentum tensor for dust is given by (5.10):

T μvðxÞ ¼ ρ0ðxÞ uμðxÞ uvðxÞ;
3 Chandrasekhar (1931a, b).
4 I should like to record here my indebtedness to the late Dan Martin, whose lecture notes (1978, Glasgow
University, unpublished) were a great help in preparing this chapter.

5 Schwarzschild (1916b).
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where u μ is the 4-velocity of the dust. For a perfect fluid, in which both a density ρ and a
pressure p are defined, the energy-momentum tensor for the fluid at rest is

~Tμv ¼

ρ 0 0 0

0
p

c2
0 0

0 0
p

c2
0

0 0 0
p

c2

0
BBBBB@

1
CCCCCA;

or

~T 00 ¼ ρ; ~Tij ¼ p

c2
δij; ~Tμv ¼ 0; μ 6¼ v: (7:2)

We need a covariant expression for this tensor, for use in the field equations.We start by going
to a moving frame, by using the Lorentz boost transformation (2.26) (but with v → − v)

x0i ¼ x i þ ðγ� 1Þ x
kvk
v2

v i þ γ
v i

c
ct ¼ δik þ γ� 1

v2
vivk

� �
x k þ γ

v i

c
x0;

ct0 ¼ γ c t þ γ
vk
c
x k ;

from which we may read off the elements of the Lorentz matrix

Λ i
k ¼ δik þ γ� 1

v2
vi vk ; Λ i

0 ¼ γ
vi

c
; Λ0

0 ¼ γ; (7:3)

and thereby calculate the elements of T μν in the moving frame:

Tij ¼ Λi
μ Λ

j
v
~Tμv

¼ Λi
k Λ

j
m ~Tkm þ Λi

0 Λ
j
0 ~T 00

¼ δik þ γ� 1

v2
vivk

� �
δjm þ γ� 1

v2
v jvm

� �
p

c2
δjm þ γ2

v iv j

c2
ρ

¼ p

c2
δij þ v iv jp

c2v2
½2ðγ� 1Þ þ ðγ� 1Þ2� þ γ2

v iv j

c2
ρ

¼ p

c2
δij þ v iv j

c2
γ2

p

c2
þ ρ

h i
;

(7:4)

Ti0 ¼ Λi
μ Λ

0
v ~Tμv

¼ Λi
k Λ

0
m ~Tkm þ Λi

0 Λ
0
0 ~T00

¼ δij þ γ� 1

v2
vivj

� �
γ
vm

c

p

c2
δjm þ γ2

vi

c
ρ

¼ γ2
vi

c

p

c2
þ ρ

h i
; (7:5)
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T00 ¼ Λ0μ Λ
0
v ~Tμv

¼ Λ0
i Λ

0
j ~T

ij þ ðΛ0
0Þ2 ~T00

¼ γ2
vivj

c2
p

c2
δij þ γ2ρ

¼ ðγ2 � 1Þ p
c2

þ γ2ρ: (7:6)

Equations (7.4) to (7.6) may be expressed in the form

Tμv ¼ p

c2
η μv þ ρþ p

c2

� �
u μ uv; (7:7)

with (cf. (5.11))

u μ ¼ 1

c

dx μ

dτ
; u0 ¼ dt

dτ
¼ γ; ui ¼ γ

vi

c
;

as may easily be checked. Having found an expression for the energy-momentum tensor in a
moving frame, it is now straightforward to make this generally covariant; then (7.7)
becomes

Tμv ¼ p

c2
g μv þ ρþ p

c2

� �
u μ uv; (7:8)

with

g μvuμ uv ¼ �1 ¼ gμv u
μ uv; (7:9)

and from (7.1)

gμv ¼
�e2v 0 0 0
0 e2λ 0 0
0 0 r2 0
0 0 0 r2 sin2θ

0
BB@

1
CCA; gμv ¼

�e�2v 0 0 0
0 e�2λ 0 0
0 0 1

r2
0

0 0 0
1

r2 sin2θ

0
BBBB@

1
CCCCA: (7:10)

In our star, which is a fluid at rest, we have

ur ¼ u1 ¼ 0; uθ ¼ u2 ¼ 0; u� ¼ u3 ¼ 0;

u0 ¼ �ð�g00Þ�1=2 ¼ �evðrÞ:
(7:11)

Then

T00 ¼ p

c2
g00 þ ρþ p

c2

� �
ðu0Þ2

¼ p

c2
g00 þ ρþ p

c2

� �
ð�g00Þ

¼ � ρg00 ¼ ρe�2v;

T11 ¼ p

c2
g11 ¼ p

c2
e�2λ; etc:;
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so

T μv ¼

ρe�2v 0 0 0

0
p

c2
e�2λ 0 0

0 0
p

c2
1

r2
0

0 0 0
p

c2
1

r2 sin2θ

0
BBBBBB@

1
CCCCCCA
: (7:12)

We write the field equations (5.24) in the form

Rμ
v � 1=2 δμv R ¼ 8πG

c2
Tμ

v: (7:13)

The components of the mixed tensor T μ
ν are easily found;

T0
0 ¼ g00T

00 ¼ �ρ; T1
1 ¼ g11T

11 ¼ p

c2
; etc:;

so

Tμ
v ¼

�ρ 0 0 0

0
p

c2
0 0

0 0
p

c2
0

0 0 0
p

c2

0
BBBBB@

1
CCCCCA: (7:14)

The components of the Ricci tensor Rμν are given by (5.35). Then

R0
0 ¼ g00R00 ¼ �e�2vR00 ¼ e�2λ �v00 � v02 þ v0λ0 � 2v0

r

� �
; (7:15)

R1
1 ¼ g11R11 ¼ e�2λ �v00 � v02 þ v0λ0 þ 2λ0

r

� �
; (7:16)

R2
2 ¼ e�2λ � 1

r2
� v0

r
þ λ0

r

� �
þ 1

r2
: (7:17)

It turns out that R3
3 =R

2
2: also T 3

3 = T
2
2 , so the field equations for these indices are the

same. The curvature scalar is

R ¼ Rμ
μ ¼ R0

0 þ R1
1 þ R2

2 þ R3
3

¼ e�2λ �2v00 � 2v02 þ 2v0λ0 � 4

r
ðv0 � λ0Þ � 2

r2

� �
þ 2

r2
:

(7:18)

Then

R0
0 � 1=2R ¼ �e�2λ 2λ0

r
� 1

r2

� �
� 1

r2

and the field equation (7.13) with μ= ν= 0 gives
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e�2λ 2λ0

r
� 1

r2

� �
þ 1

r2
¼ 8πG

c2ρ
: (7:19)

Similarly

R1
1 � 1=2R ¼ �e�2λ 2v0

r
� 1

r2

� �
� 1

r2

and the field equation with μ= ν= 1 gives

e�2λ 2v0

r
þ 1

r2

� �
� 1

r2
¼ 8πG

c2
p

c2
: (7:20)

Likewise the μ= ν= 2 and μ= ν = 3 field equations both give

e�2λ v00 þ v02 � v0λ0 þ v0

r
� λ0

r

� �
¼ 8πG

c2
p

c2
: (7:21)

The three equations (7.19)–(7.21) may now be used to find the functions ν(r) and λ(r), as
long as some additional information about the pressure p and matter density ρ is available.
To tackle the problem in full generality a relation between these quantities must be assumed;
that is, an equation of state, normally taken to be of the form

p

c2
¼ Kργ: (7:22)

This is called a polytropic equation of state, with γ the polytropic exponent (and K a
constant). We shall here adopt a simpler procedure and assume that the fluid of the star is
incompressible: ρ = const. This is not such a bad assumption for light stars such as the Sun,
and it has the additional virtue of simplicity – as well as being the assumption made by
Schwarzschild himself. Since

d
dr

ðr e�2λðrÞÞ ¼ e�2λ � 2rλ0 e�2λ;

Equation (7.19) may be written in the form

d
dr

ðr e�2λÞ ¼ 1� 8πGρ
c2

r2; (7:23)

which under the assumption ρ = const may be integrated to give

e�2λ ¼ 1� 8πGρ
3c2

r2 þ C

r
;

where C is a constant. To eliminate the singularity at r = 0 put C= 0, then

e�2λ ¼ 1� 8πGρ
3c2

r2 � 1� A r2; (7:24)

with

A ¼ 8πGρ
3c2

: (7:25)
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We now have a solution for g11 = e
2λ. To proceed further, differentiate Equation (7.20) and

substitute for ν00 from (7.21), yielding, after a bit of algebra

8πG
c2

p0

c2
¼ � 2e�2λ

r
v0ðv0 þ λ0Þ; (7:26)

where p0 =
dp
dr
: note that p is not constant, even though ρ is. Adding Equations (7.19) and

(7.20) gives

8πG
c2

ρþ p

c2

� �
¼ 2e�2λ

r
ðv0 þ λ0Þ: (7:27)

These last two equations give

p0

c2
¼ �v0 ρþ ρ

c2

� �
;

which may be integrated to give

ρþ pðrÞ
c2

¼ D e�vðrÞ; (7:28)

where D is a constant. This may be rearranged, using (7.24), to give

8πG
c2

Dr ¼ 2v0evð1� Ar2Þ þ 2Ar ev: (7:29)

To solve (7.29) put

evðrÞ ¼ γðrÞ;
then γ0 = ν0 eν and (7.29) becomes

2γ0ð1� Ar2Þ þ 2Ar γðrÞ ¼ 8πG
c2

Dr: (7:30)

This is an inhomogeneous differential equation, which has a particular solution

γ ¼ 4πG
c2

D

A
:

The corresponding homogeneous equation

du
dr

ð1� Ar2Þ þ Ar uðrÞ ¼ 0

has the solution

uðrÞ ¼ Bð1� Ar2Þ1=2;
(B = const), hence (7.29) has the solution

evðrÞ ¼ γðrÞ ¼ 4πG
c2

D

A
� Bð1� Ar2Þ1=2 � C � Bð1� Ar2Þ1=2; (7:31)

where C is a further constant, or
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�g00 ¼ e2vðrÞ ¼ C � B ð1� A r2Þ1=2
h i2

:

This equation, together with (7.24), gives the interior Schwarzschild solution in the form

ds2 ¼ � C � Bð1� Ar2Þ1=2
h i2

c2 dt2 þ dr2

1� Ar2
þ r2 dΩ2: (7:32)

This metric contains two constants B and C – the quantity A is essentially the density – see
(7.25). These constants may now be found from two requirements; firstly, that p = 0 at r =R,
the radius of the star (this is surely a reasonable definition of radius!), and secondly that
(7.32) matches the Schwarzschild vacuum solution (5.37) at r =R.

For the first requirement, put p = 0 at r =R in (7.28) to give

ρ ¼ De�vðRÞ ) ρ evðRÞ ¼ D

and hence, from (7.31),

ρ
4πG
c2

D

A
� Bð1� AR2Þ1=2

� �
¼ D:

Substitute for A in the first term above, from (7.25), to give

D ¼ 2ρBð1� AR2Þ1=2

and then (7.31) gives

evðrÞ ¼ B 3ð1� AR2Þ1=2 � ð1� Ar2Þ1=2
h i

;

so the line element becomes

ds2 ¼ �B2 3ð1� AR2Þ1=2 � ð1� Ar2Þ1=2
h i2

c2 dt2 þ dr2

1� Ar2
þ r2 dΩ2; (7:33)

with A given by (7.25). This line element now features the constant B, which is found from
the requirement that (7.33) match the line element (5.37) corresponding to the exterior
solution, at r =R . This vacuum line element is

ds2 ¼ � 1� 2m

r

� �
c2 dt2 þ 1� 2m

r

� ��1

dr2 þ r2 dΩ2 (7:34)

with

m ¼ MG

c2
:

Matching g11 at r =R gives

2m

R
¼ AR2 ) R ¼ 3M

4πρ

� �1=3
; (7:35)

on substituting from (7.25), which is of course the expected expression for the radius of a
star with mass M and constant density. Then matching g00 gives
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B2 3ð1� AR2Þ1=2 � ð1� AR2Þ1=2
h i2

¼ 1� 2m

R
¼ 1� AR2;

using (7.35); and this gives

B ¼ 1

2
:

Finally, then, the internal Schwarzschild solution for the space-time metric inside a spheri-
cally symmetric star of radius R and density ρ is

ds2 ¼ � 3

2
ð1� AR2Þ1=2 � 1

2
ð1� Ar2Þ1=2

� �2
c2 dt2 þ dr2

1� Ar2
þ r2 dΩ2; (7:36)

with

A ¼ 8πGρ
3c2

:

The constant A evidently has the dimensions of (length)−2. For the Sun

A ¼ 8πGρ
3c2

¼ c2R3
S

2GMS
¼ ð3:38� 1011 mÞ�2:

Since the actual radius of the Sun is 6.96 × 108 m,

AR2 � 1 ðSunÞ (7:37)

and g00 and g11 differ little from unity, so the Schwarzschild metric inside the Sun is, like that
outside it, close to the Minkowski metric.

In understanding the nature of gravitational collapse in General Relativity, and to perform
explicit calculations, the Tolman–Oppenheimer–Volkoff equation has played a crucial role.6

We close this section by giving a simplified derivation of it, restricting ourselves to the case
of constant density, as assumed above. We start from the condition for energy-momentum
conservation

Tμv
;v ¼ 0: (7:38)

From (7.8) we have

Tμv
;v ¼ 1

c2
∂p
∂xv

g μv þ ρþ p

c2

� �
u μ uv

h i
;v

(7:39)

since g μν
;ν= 0. For a general (2, 0) tensor S

μν we have

Sμv;v ¼ Sμv;v þ Gμ
λvS

λv þ Gv
λvS

μλ

¼ Sμv;v þ 1ffiffiffiffiffiffiffi�g
p ∂λ

ffiffiffiffiffiffiffi�g
p	 


Sμλ þ Gμ
λvS

λv

¼ 1ffiffiffiffiffiffiffi�g
p ∂λ

ffiffiffiffiffiffiffi�g
p

Sμv
	 
þ Gμ

λvS
λv; (7:40)

6 Tolman (1939), Oppenheimer & Volkoff (1939).
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where in the second line we have used Equation (3.212). Applying this to the second term in
(7.39) gives

T μv
;v ¼ 1

c2
∂p
∂xv

g μv þ 1ffiffiffiffiffiffiffi�g
p ∂v

ffiffiffiffiffiffiffi�g
p

ρþ p

c2

� �
uμ uv

h i
þ Gμ

λv ρþ p

c2

� �
uv uλ:

Referring to the second term on the right hand side above, uν= 0 unless ν= 0 (see (7.11)), but
the condition of equilibrium requires that ∂0[…] = 0, so this second term vanishes.
Multiplying by gμλ then gives, in view of (7.38)

1

c2
∂p
∂xv

δvλ ¼ �Gμ
00gμλ ρþ p

c2

� �
ðu0Þ2:

From (7.11), however, we see that (u0)2 =− (g00)
−1; and since

Gμ
00 ¼ �1=2gμσð∂σg00Þ

we obtain

1

c2
∂p
∂xλ

¼ �1=2ð∂λg00Þðg00Þ�1 ρþ p

c2

� �
: (7:41)

On the other hand,

∂λ ln
ffiffiffiffiffiffiffiffiffiffi�g00

p ¼ 1

2g00
∂λg00;

so (7.41) gives

1

c2
∂p
∂xλ

¼ � ρþ p

c2

� �
∂λ ln

ffiffiffiffiffiffiffiffiffiffi�g00
p

: (7:42)

Putting g00 =−e2ν(r), the λ= 1 component of this equation gives

dp
dr

¼ �ðρc2 þ pÞv0: (7:43)

We shall now find an expression for
dp
dr

in the case of a star of constant density. From
Equations (7.19) and (7.20) we have

e�2λ 2λ0

r
� 2v0

r
� 2

r2

� �
þ 2

r2
¼ 8πG

c2
ρ� p

c2

� �
;

or, multiplying by ½r 2,

1� e�2λð1þ rv0Þ þ rλ0e�2λ ¼ 4πG
c2

r2 ρ� ρ
c2

� �
: (7:44)

Now write (7.19) as

e�2λ:
λ0

r
¼ 1

2

e�2λ

r2
� 1

r2
þ 8πGρ

c2

� �
;

hence
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rλ0e�2λ ¼ 1

2
e�2λ � 1þ 8πGρr2

c2

� �
¼ 4πGρr2

c2
� m

r
; (7:45)

where (7.34) has been used in the last step. Now substitute (7.45) into the appropriate term in
(7.44), again making use of (7.34), and also (7.43):

1� 1� 2m

r

� �
1� r p0

pþ ρc2

� �
þ 4πGρr2

c2
� m

r
¼ 4πG

c2
r2 ρ� p

c2

� �
:

This equation gives, on rearrangement, and on substituting m =
MG

c2
=
4πG
3c2

r3ρ,

dp
dr

¼ �
4πG ρþ p

c2

� � ρ
3
þ p

c2

� �
r2

ðr � 2mÞ : (7:46)

This is the Tolman–Oppenheimer–Volkoff (TOV) equation. It has here been derived under
the assumption of constant density ρ, but actually holds in the general case where ρ depends
on r. It is clear from this equation that a higher density ρ gives rise to a larger pressure
gradient, which then aids the collapse of the star. This is, of course, completely consistent
with intuition. But the interesting feature of the TOV equation is that the same is true of
pressure. Like mass density, pressure also aids collapse: it gives rise to a gravitational force
which contributes to collapse. This is a characteristic of General Relativity not shared by
Newtonian gravity. In Newtonian theory pressure has no gravitational effect; and of course
in any theory, pressure gives rise to non-gravitational forces which oppose collapse
(successfully or not): for example through the gas laws, or Fermi pressure.

To solve the TOV equation in the general case, an equation of state relating ρ and p is
needed, and this is taken to be a polytropic equation like (7.22) above. It is then clear that the
TOVequation is non-linear; it may be solved numerically, giving the so-called Lane–Emden
solutions. For more details of this the reader is referred to the literature. It is worth noting,
finally, that in the non-relativistic limit r≫ 2m, ρ≫ p/c2, Equation (7.46) becomes

dp
dr

¼ � 4πG
3

ρ2r; (7:47)

as expected – see (7.80) below.

7.2 Energy density and binding energy

On a visit to Einstein in Princeton … [George Gamow] casually mentioned, when they
were out walking, that … Pascual Jordan had realised that a star might be made out of
nothing, since … its negative gravitational energy is numerically equal to its positive
rest-mass energy. Einstein stopped in his tracks and, since we were crossing a street,
several cars had to stop to avoid running us down.7

7 Gamow (1970).
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A star is of course a bound system, and its mass, being the quantity that determines the
motion of a planet moving in its gravitational field, includes a contribution from the
gravitational binding energy. This is in complete analogy with, for example, nuclear mass:
the mass of an atomic nucleus is the number of protons multiplied by the proton mass plus
the same for neutrons, minus the nuclear binding energy. This binding energy, by Special
Relativity, contributes to the inertial mass of a nucleus, and in the same way, in General
Relativity, the gravitational binding energy will contribute to the gravitational mass of a star.

With this sort of consideration in mind, let us consider once more the exterior and interior
Schwarzschild solutions (7.34) and (7.36) above. The ‘mass’M of the star, as measured by a
planetary orbit (the planet following a geodesic in the Schwarzschild vacuum space-time),
is, from the above equations, simply (4π/3)ρR3, or, in the general case where the density is
not constant,

M ¼
ðR
0

4πr2ρðrÞ dr: (7:48)

There is at first sight something odd about this expression, however. Would it not be more
proper, more ‘covariant’, to include a factor

ffiffiffiffiffiffi
g11

p
, with g11 given by (7.36), which would

give a proper 3-dimensional (t = const) volume element? We would then write

M1 ¼
ðR
0

4πr2 1� 8πGρr2

3c2

� ��1=2

ρ rð Þ dr: (7:49)

What we want to claim is that something like this expression is, in fact, the ‘bare mass’ of the
star – the mass arrived at by neglecting the gravitational binding energy. Because of the extra
factor in the integrand in (7.49) it is clear thatM1 >M, so it is indeed plausible thatM1 could
represent the bare mass, with M being the actual, physical, mass, as measured by orbiting
planets, including, as noted above, the (negative) gravitational binding energy. This idea is
almost satisfactory, but not quite: it is in fact better to replace ρ(r) with n(r), the baryon
number density, and then to define

B ¼ 1

mN

ðR
0

4πr2 1� 8πGρr2

3 c2

� ��1=2

n ðrÞ dr; (7:50)

(where mN is the nucleon mass) as being the baryon number of a star. (It is, of course,
understood that the vast bulk of the mass of stars comes from protons and neutrons.) Then

mNB ¼ M0 ¼
ðR
0

4πr2 1� 8πGρr2

3c2

� ��1=2

nðrÞ dr (7:51)

is the ‘preassembly’ or ‘bare’ mass of the star. The virtue of proceeding in this way is that
baryon number is a conserved quantity, with the consequence that n(r) obeys a simpler
conservation law than does ρ(r), as we shall see below.
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We now consider the simplified case n(r) = const, analogous to ρ(r) = const considered
above; then (7.50) becomes

B ¼ 4πn
mN

ðR
0

r2ð1� Ar2Þ�1=2 dr; (7:52)

with A given by (7.25). This integral may be evaluated by standard trigonometrical
substitutions to give

B ¼ 4πn R3

3mN
:
3

2

sin�1X � X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X 2

p

X 3
� 4πnR3

3mN
f ðX Þ; (7:53)

where

X ¼ R
ffiffiffi
A

p
) X 2 ¼ 2GM

Rc2
¼ 2m

R
: (7:54)

and the function f (X) is defined by (7.53). We see from (7.37) that for normal stars such as
the Sun

X 2 � 1: (7:55)

This allows us to find a good approximation for f (X). Putting X = sin θ it is straightforward to
check that up to the relevant order

θ ¼ sin�1X ¼ X þ X 3

6
þ 3X 5

40
; X � 1

and

f ðX Þ ¼ 1þ 3

10
X 2 þ � � � ¼ 1þ 3

5

m

R
þ � � � : (7:56)

We can now check our claim that the difference between M, defined in (7.48), and the
preassembly mass (or bare mass) M0 is, in the Newtonian limit, equal to the gravitational
binding energy. Working in the regime of constant ρ and n the preassembly mass becomes,
from (7.52), with n= ρ,

M0 ¼ mNB ¼ 4πρR3

3
f ðX Þ ¼ M f ðX Þ

where M is given by (7.48), so

M0 �M ¼ M ½ f ðxÞ � 1� ¼ 3

5

GM2

Rc2
; (7:57)

which is the gravitational binding energy in the Newtonian approximation (see
Problem 7.2).

We now need to justify the manoeuvre above, of defining the preassembly mass in terms
of n(r) rather than ρ(r). We turn to the more general case of a compressible material and
define
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MðrÞ ¼
ðr
0

4 πr02ρðr0Þ dr0; (7:58)

the mass contained within a sphere of radius r. It follows from this equation that

dMðrÞ ¼ 4πr2ρðrÞ dr: (7:59)

We may then write (7.48) as

M ¼
ðR
0

4πr2 ρðrÞ dr

¼
ðR
0

4πr2 1� 1� 2GMðrÞ
rc2

� ��1=2
" #

ρðrÞ dr

þ
ðR
0

4πr2 1� 2GMðrÞ
rc2

� ��1=2

ρðrÞ dr: (7:60)

Let us write the relation between ρ(r), the mass density, and n(r), the baryon number
density, as

ρðrÞ ¼ nðrÞ mN þ ε
c2

� �
; (7:61)

where ε is the specific internal energy (thermal, compressional, etc.) per particle. Using a
binomial approximation on the first term in (7.60) and substituting (7.61) into the second
term gives

M �
ð
4πr2

GMðrÞ
rc2

ρðrÞ dr þ
ð
4πr2 1� 2GMðrÞ

rc2

� ��1=2

mN nðrÞ dr

þ 1

c2

ð
4πr2 1� 2GMðrÞ

rc2

� ��1=2

ε nðrÞ dr

¼
ð
GMðrÞ
rc2

dM þM0 þ U

c2
; (7:62)

where (7.59) and (7.51) have been used in the last step and

U ¼
ð
4πr2 1� 2GMðrÞ

r c2

� ��1=2

ε nðrÞ dr (7:63)

is the internal energy of the stellar material. Defining

EG ¼
ð
GMðrÞ

r
dM (7:64)

as the gravitational binding energy we may write (7.62) in the form
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MPN ¼ M0 þ EG

c2
þ U

c2
: (7:65)

This is the Post-Newtonian (PN) approximation to the expression for the mass of a star, since
the gravitational binding energy (7.64) becomes, in the Newtonian approximation of
constant density, equal to (7.57) – and (7.65) represents an improvement on this.

We shall show finally that the relations above imply that entropy is conserved in this
hydrodynamic flow. We begin with the energy-momentum tensor (7.8), which obeys the
covariant conservation law T μν

;ν= 0, hence

Tμ
v
;v ¼ ρþ p

c2

� �
uv

h i
; v
uμ þ ρþ p

c2

� �
uv uμ;v þ p;v gμ

v ¼ 0;

or

ρþ p

c2

� �
uv

h i
;v
uμ þ ρþ p

c2

� �
uv u

v
μ;

h i
þ 1

c2
p; μ ¼ 0: (7:66)

Now define, for any tensor T …
…

_T :::
::: ¼ T :::

:::; μ u
μ: (7:67)

This is a ‘generalised’ time derivative, which reduces to
d
dτ

in the comoving frame. Then
uμ;νu

ν= _uμ, hence

ρþ p

c2

� �
uv

h i
;v
uμ þ ρþ p

c2

� �
_uμ þ 1

c2
p; μ ¼ 0;

or

_uμ ¼ � p; μ
ρc2þ p

�
ρþ p

c2

	 

uv

� �
;v
uμ

ρþ p
c2

: (7:68)

Multiply this equation by uμ, and recall that since uμ uμ =−1, _uμ u
μ= 0; then

1

c2
_p ¼ ρþ p

c2

� �
uv

h i
;v

¼ ρþ p

c2

� �
;v
uv þ ρþ p

c2

� �
uv;v

¼ 1

c2
_pþ _ρþ ρþ p

c2

� �
uv;v (7:69)

or

_ρ ¼ � ρþ p

c2

� �
uv;v: (7:70)

We may express this in a different way: remove the brackets above and put, as in (7.67),

_ρ ¼ ρ;μu
μ;

then
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ρuv;v þ ρ;vu
v ¼ � 1

c2
p uv;v;

ðρuμÞ;μ þ
1

c2
puμ;μ ¼ 0: (7:71)

This equation, derived from the covariant conservation of the energy-momentum tensor, is,
however, not a continuity equation. A continuity equation is of the form

ðnu μÞ;μ ¼ 0; (7:72)

which indeed we may write if n is identified with baryon number density. Consider, then, a
gas of N particles, occupying a volume V, so

n ¼ N

V
:

The connection between the (mass) density ρ, baryon number density n and pressure p
follows from the equation of state

p ¼ pðρÞ
and the definition of pressure

p ¼ � dðenergy=baryonÞ
dðvolume=baryonÞ ¼ �c2

dðρ=nÞ
dð1=nÞ ¼ c2n

∂ρ
∂n

� c2ρ

or

ρþ p

c2
¼ n

∂ρ
∂n

: (7:73)

The first law of thermodynamics gives the entropy change dS of a gas as

T dS ¼ dU þ p dV : (7:74)

If the gas contains N particles then the specific entropy σ and specific internal energy ε are
given by

S ¼ Nσ; U ¼ Nε

and (7.74) gives

T dσ ¼ dεþ p d
1

n

� �
: (7:75)

Now from (7.69) and (7.61)

1

c2
_p ¼ nðrÞmN þ 1

c2
nðrÞεþ P

c2

� �
uμ

� �
;μ

¼ mN _εþ ε
c2

ðnuμÞ;μ þ
1

c2
nε; μu

μ þ 1

c2
p; μ u

μ þ p

c2
uμ;μ

¼ 1

c2
n_εþ 1

c2
_pþ p

c2
u μ

;μ;
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where (7.72) has been used. Hence

puμ;μ þ n_ε ¼ 0: (7:76)

Equation (7.72), however, implies

ðnuμÞ;μ ¼ n; μu
μ þ nuμ;μ ¼ _nþ nu μ

;μ ¼ 0;

hence

u μ
;μ ¼ � _n

n
: (7:77)

Substituting this in (7.76) gives

�p
_n

n
þ n_ε ¼ 0;

hence

p
1

n

� �
_þ _ε ¼ 0; (7:78)

which is equivalent to (7.75), and shows that the entropy is constant.

7.3 Degenerate stars: white dwarfs and neutron stars

As mentioned above, stars are configurations of matter in equilibrium under the action of
two forces; gravity pulling inwards and some other force in counterbalance. In ‘normal’ stars
the counterbalancing force is provided by the thermal pressure of the stellar gas, but in
degenerate stars it is provided by the Fermi pressure of either electrons or neutrons. It is this
second case which is of principal interest in this section, but it is instructive to begin with
some remarks about ‘normal’ stars, in a simple Newtonian approximation.

Consider a spherical, non-rotating star, of mass density ρ(r), and consider within it a
spherical shell a distance r from the centre, and thickness dr. An area A of this shell has mass
ρA dr and experiences a gravitational force

dF ¼ GMðrÞ
r2

ρðrÞA dr;

where M(r) is given by (7.58) – the mass of material inside the spherical shell. This force
must be balanced by a pressure p(r) such that dF = A dp, and hence

dp
dr

¼ �GMðrÞ
r2

ρðrÞ: (7:79)

In the case of constant density ρ = const, M(r) = (4π/3)ρr 3 and the pressure gradient is

dp
dr

¼ � 4 π
3

Gρ2r; (7:80)
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whose solution is

p ¼ p0 � 2π
3
Gρ2r2;

where p0 = p(0), the pressure at the centre. The stellar radius R may be defined as the
(minimum) value of r for which p(r) = 0, giving

p0 ¼ 2 π
3

Gρ2R2: (7:81)

Then

p0
ρc2

¼ 2π
3c2

GρR2 ¼ GM

2Rc2
� m

2R
; (7:82)

where m =
GM
c2

is the Schwarzschild radius of the star.

A ‘normal’ star may be considered to be a gas of protons and neutrons, each of massmN. A
volume V of N such particles obeys the ideal gas law pV=NkT (where k is Boltzmann’s

constant), so since ρ =
NmN

V
we have

p

ρc2
¼ kT

mNc2
:

At the centre of the Sun T= 1.6× 107K, so, expressing both numerator and denominator in
MeV,

kT

mNc2
¼ 1:6� 107 � 8:6� 10�11

939
¼ 1:5� 10�6:

On the other hand, for the Sun

mS

2RS
¼ 1:47� 103

2� 6:96� 108
¼ 1:1� 10�6;

so (7.82), which is only an order-of-magnitude estimate, holds up well.
We now turn to the case of degenerate stars. As mentioned in the introductory section of

this chapter, stars get their energy from nuclear fusion reactions, but when the stellar interior
becomes dominated by iron the fusion reactions no longer produce photons, the temperature
drops and the star begins to collapse. The question then arises: is there any other equilibrium
configuration possible? The answer is yes: as the star collapses the electrons are squeezed
together. In one dimension a particle confined to a region d has a momentum p ~ ħ/d. If the
particles are bosons any number of themmay occupy the same state, but if they are fermions
with spin ½, a maximum of two may occupy a given state, so if N electrons are confined to a
volume V the momentum states become filled up to the Fermi level pF . As an order of
magnitude estimate, we have n = N/V particles per unit volume, so one particle occupies a
volume 1/n= d3 and the Fermi momentum is

pF 	 h

d
¼ �hn1=3 ) n 	 pF

3: (7:83)
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The electron becomes a degenerate gas, whose pressure may – or may not – be able to
withstand the gravitational inward pressure of the star. Thus quantum considerations, in the
shape of degenerate matter, offer the possibility of new types of objects in the sky.

Let us first make a more precise reckoning than the order-of-magnitude estimate (7.83). It
is well known from elementary quantum theory that for a particle confined to a cubic box
with sides of length L, periodic boundary conditions mean that the wave numbers kx, ky and
kz are integral multiples of (2π/L):

kx ¼ 2π
L

� �
l; ky ¼ 2π

L

� �
m; kz ¼ 2π

L

� �
n;

with l, m and n integers. Hence the possible states in k-space are given by the corners of
cubes with l, m, n= 1, 2, 3, 4 and so on, and to each state there correspond two electrons
(with spin up and spin down along some axis). It might help to visualise this by displacing
the cubes by (π/L) in each of the x, y and z directions so that the points corresponding to
possible quantum states are at the centres of cubes. There are then two electrons per cube,
each cube being of volume (2π/L)3. The electrons then occupy all states up to kF; these states
are contained within a sphere of radius kF and therefore volume (4π/3)kF

3. The number of
electrons (which must be an integer!) is, nevertheless, to an excellent approximation

N ¼ 2� 4 π
3

� kF
3 � L

2π

� �3

¼ kF3

3π2
L3 ¼ kF3

3π2
V

and the number per unit volume (at the rate of two per cube of volume V = L3) is

N

V
¼ n ¼ kF

3

3π2
: (7:84)

With pF = ħkF this gives

n ¼ 1

3π2�h3
pF

3; (7:85)

or

pF ¼ ð3π2Þ1=3�hn1=3; (7:86)

as expected in (7.83). We may write (7.85) as

n ¼ 1

π2h3

ðpF
0

p2 dp ¼ 1

3π2�h3
pF

3: (7:87)

This is the number of electrons per unit volume. To find the energy density of the electron
gas we must include in this integral the (kinetic) energy of each electron, which is

T ¼ ðm2c4 þ p2c2Þ1=2 � mc2: (7:88)

In the non-relativistic limit p ≪ mc this becomes
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T ¼ mc2 1þ p2

m2c2

� �1=2

�mc2 � p2

2m
;

giving an energy density

e ¼ 1

2mπ2h3

ðpF
0

p4 dp ¼ 1

10mπ2�h3
pF

5: (7:89)

On substituting for pF from (7.87) this gives

e ¼ 3

10
ð3π2Þ2=3 �h2

me

� �
n5=3 ðnon-relÞ: (7:90)

Here the mass is explicitly shown as the electron mass me; since it is much smaller than the
nucleon mass the electron will make by far the bigger contribution to the energy density of a
degenerate gas.

In the opposite case, of the ultra-relativistic limit p ≫ mc the kinetic energy (7.88)
becomes

T ¼ pc 1þ m2c2

p2

� �1=2

�mc2 � pc;

giving an energy density

e ¼ 1

π2h3

ðpF
0

p2 � pc dp ¼ c

4π2�h3
p4F;

which, on substituting for pF from (7.87), gives

e ¼ 3

4
ð3 π2Þ1=3ðc�hÞ n4=3 ðultra-relÞ: (7:91)

The pressure of the gas is given by (7.73), with ρc2 → e:

p ¼ n
∂e
∂n

� e; (7:92)

from which it is straightforward to find the following expressions in the non-relativistic and
ultra-relativistic limits:

p ¼ 2

3
e ¼ 1

5
ð3π2Þ2=3 �h2

me

� �
n5=3 ðnon-relÞ; (7:93)

p ¼ 1

3
e ¼ 1

4
ð3 π2Þ1=3ðc�hÞ n4=3 ðultra-relÞ: (7:94)

There is another way of characterising these (non-relativistic and ultra-relativistic) limits.
The mass density of a star is
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ρ ¼ nmNμ; (7:95)

where n is, as above, the number density of electrons, mN is the nucleon mass and μ is the
number of nucleons per electron – an average taken throughout the star. For stars that have
used up their hydrogen μ ≈ 2. As the star collapses ρ increases and the electrons are forced
closer together. When the distance between electrons approaches their Compton wavelength
ħ/mec we may define a critical density ρc:

ρc 	
μmN

d3
¼ μmN

�h3
m3

ec
3: (7:96)

For a precise definition let us incorporate a factor 3π2 and define

ρc ¼
μmN

3π2�h3
m3

ec
3: (7:97)

From (7.85) and (7.95) this definition corresponds to

ρ ¼ ρc , pF ¼ mec: (7:98)

The non-relativistic limit pF ≪ mec is therefore ρ ≪ ρc, and the ultra-relativistic limit is
ρ ≫ ρc. What is the value of ρc? Working in SI units,

ρc ¼
1:7� 10�27 � 2� ð9:11Þ3 � 10�93 � 27� 1024

3π2 � ð1:05Þ3 � 10�102

¼ 2:03� 109 kgm�3

� 2� 106 � density of water: (7:99)

Now let us calculate the ratio of central pressure to energy density, in this case of a star
composed of a degenerate electron gas. From (7.95) and (7.97) we have

n ¼ ρ
ρc

� �
:
m3

ec
3

3π2�h3
; (7:100)

and hence, with a bit of algebra, it follows from (7.93) that in the non-relativistic limit

ρ � ρc :
p

ρc2
¼ me

5mNμ
ρ
ρc

� �2=3

ðnon-relÞ (7:101)

and that in the ultra-relativistic limit, using (7.94),

ρ 
 ρc :
p

ρc2
¼ me

4mNμ
ρ
ρc

� �1=3

ðultra-relÞ: (7:102)

We may convert these expressions (for the ratio of electron Fermi pressure to mass density)
of the star into ones involving the stellar mass M. From (7.82),

p

ρc2
¼ GM

2Rc2
¼ m

2R
; (7:103)

where m is the Schwarzschild radius of the star (not a mass!). For a star of constant density
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R ¼ 3M

4πρ

� �1=3
;

hence

m

R
¼ GM2=3

c2
4π
3

� �1=3
ρ1=3

and

M ¼ 3

4π

� �1=2 c3

G3=2
ρ�

1=2 m

R

� �3=2
: (7:104)

Now insert (7.103) into (7.104) and find, in the two cases corresponding to (7.101) and
(7.102),

ρ � ρc : M ¼ 18π
125

� �1=2 c�h

G

� �3=2 1

mN
2μ2

ρ
ρc

� �1=2
; (7:105)

ρ 
 ρc : M ¼ 9π
32

� �1=2 c�h

G

� �3=2 1

m2
Nμ

2
: (7:106)

It is noteworthy that this latter expression is a unique mass, dependent only on constants of
nature and μ. In particular it depends on the nucleon mass mN but not on the electron mass,
even though it is the electron Fermi pressure which is withstanding the gravitational inward
pressure.

From dimensional considerations it is clear from (7.106) that the quantity (cћ/G)½ is a
mass; it generally goes by the name of the Planck mass:

mPl ¼ c�h

G

� �1=2

¼ 2:17� 10�8 kg: (7:107)

The crucial ingredient in the formulae above is, in numerical terms,

c�h

G

� �3=2 1

mN
2
¼ mPl

3

mN
2
¼ 3:66� 1030 kg ¼ 1:84MS: (7:108)

It is then clear that the mass of an object which is held in equilibrium by a balancing of the
gravitational force with the Fermi pressure of degenerate electrons is of the order of the solar
mass.

As well as deriving formulae for the mass it is straightforward, though slightly messy, also
to derive expressions for the radius of degenerate stars. In the case ρ≪ ρc the balancing of
gravitational and degeneracy pressures gives, from (7.81) and (7.93)

2π
3
Gρ2R2 ¼ 1

5
ð3π2Þ2=3 �h2

me

� �
n5=3: (7:109)

Since M =
4π
3

R3ρ, it follows that
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R ¼ 3

4π

� �1=3

M 1=3ρ�1=3 (7:110)

and hence

ρR ¼ 3

4π

� �1=3

M 1=3ρ2=3:

Substituting this, together with (7.95), into the left hand side of (7.109) gives

π
6

� �1=3
GM 2=3ðμmNÞ4=3 n4=3 ¼ 3π2ð Þ2=3

5

�h2

me

� �
n5=3;

from which

n ¼ 125

54π3
G3M 2ðμmNÞ4 me

3

�h6

and hence

ρ ¼ μmNn ¼ 125

54π3
G3M 2ðμmNÞ5 me

3

�h6
:

Substituting this into (7.110) gives

R ¼ 81π2

250

� �1=3
1

G
M�1=3ðμmNÞ�5=3 �h

2

me
(7:111)

and, finally, substituting for M from (7.105) gives

R ¼ 9 π
10

� �1=2 �h3

cG

� �1=2
1

μmNme

ρ
ρc

� ��1=6

: (7:112)

In numerical terms this gives, taking μ= 2,

ρ � ρc : R ¼ 4:2� 106
ρ
ρc

� ��1=6

m: (7:113)

This is of the same order of magnitude as the radius of the Earth, which is 6.4× 106m. (Note
the only slight dependence on ρ: if ρ/ρc = 0.1, (ρ/ρc)

−1/6≈ 1.47.)
On the other hand, in the relativistic case ρ ≫ ρc, Equations (7.111) and (7.106) yield

R ¼ 6

5

π
2

� �1=2 �h3

cG

� �1=2
1

μmNme
: (7:114)

In numerical terms, again with μ= 2, we find

ρ 
 ρc : R ¼ 3:8� 106 m; (7:115)

a unique radius, which is actually very close in value to the non-relativistic case (7.113).

249 7.3 Degenerate stars: white dwarfs and neutron stars



Numerical estimates for the mass are easily obtained from (7.105) and (7.106) which,
with (7.108) give (with μ= 2)

ρ � ρc : M ¼ 0:31
ρ
ρc

� �1=2

MS; (7:116)

ρ 
 ρc : M ¼ 0:43MS: (7:117)

This reasoning indicates that there is a maximum mass, above which an object held in
equilibrium by the balancing of gravity with the electron Fermi pressure becomes unstable.
The actual values found above assume a constant density throughout the star. Amore precise
estimate yields a value of 1.44MS, called the Chandrasekhar limit.8 Objects with these
properties have been known for some time, and are white dwarfs – they typically have a
mass similar to the Sun’s and a radius similar to the Earth’s. No white dwarf has been
discovered with a mass exceeding the Chandrasekhar limit. Sirius B, for example, is quoted
as having a mass of 1.05MS and a radius of 5.5× 106m.9

Collapsing stars with a larger mass than the Chandrasekhar limit will therefore possess no
white dwarf equilibrium state, so collapse will continue. As it does so, however, the electron
energy increases and eventually the electrons in the star will react with protons

e� þ p ! nþ νe

to produce neutrons and electron neutrinos. The neutrinos, having an extremely weak
interaction with matter, will escape from the star, which then simply becomes a collection
of neutrons – a neutron star. Collapse then proceeds unimpeded by the electrons, as layer
upon layer of the stellar material hurtles towards the centre. Neutrons, however, are also
fermions and there will come a point at which neutron Fermi pressure will (successfully or
not) resist the inward gravitational pull. If a neutron star is formed its radius is easy to
calculate: since neutrons, and not electrons, are exerting a Fermi pressure, simply replaceme

by mN in (7.112) and (7.114) (and put μ= 1), giving, in place of (7.115), a radius of about
4 km (!). The material of a collapsing star, raining down on this core, will be thrown back on
impact, resulting in a supernova explosion. The earliest such explosion known is the famous
Chinese observation in AD 1054 of an event in the Crab Nebula; it was so bright that it was
visible in the day sky for about three weeks. Because of their small size neutron stars can
rotate very fast, and it is nowwidely believed that pulsars are rotating neutron stars. A pulsar
has indeed been found at the centre of the Crab Nebula and in fact many pulsars are now
known. The calculation of the mass of a neutron star is more complicated than the method
shown above. As well as non-linear effects in the TOV equation, there are also problems
arising because the nuclear physics required is not well understood, but a recent estimate of
the maximummass quotes the value 6.7MS.

10 In this context a most interesting object is PSR
1913+16, the Hulse–Taylor binary pulsar. It consists of two neutron stars in orbit round each
other, and details of this system are now known with amazing accuracy: for example the

8 Chandrasekhar (1931a, b).
9 By Carroll & Ostlie (1996), p. 578.
10 Hartle (1978); see also Hartle (2003), p. 536.
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masses of the neutron stars are M1 = (1.4410 ± 0.0005)MS and M2 = (1.3874 ± 0.0005)MS.
But perhaps the most interesting feature of this binary system is the slow-down in its rotation
rate, since this is attributed to a loss of energy through gravitational radiation. This topic will
be treated in Chapter 9.

Very heavy collapsing stars will, following the logic above, have no equilibrium. There
will then be a state of continued collapse, in particular into a size smaller than the
Schwarzschild radius 2m. This is a black hole, on whose study we now embark.

7.4 Schwarzschild orbits: Eddington–Finkelstein
coordinates

The extraordinary physics of black holes has its origin in the highly unexpected properties
of the surface r= 2m in the Schwarzschild solution. Let us first note that this really is a
(2-dimensional) surface. In general one constraint (r=2m) in the parameters of a 4-dimensional
space (space-time) will leave a 3-dimensional manifold, or ‘hypersurface’. But putting r=2m in
the line element (5.36) causes g00 to vanish, so the time dimension collapses and we are actually
left with a 2-dimensional ‘surface’. It is in fact a null surface, as we shall see below.

We saw in Section 5.12 that the radial fall of a particle from r> 2m to decreasing values of
r takes an infinite time, measured in the Schwarzschild time coordinate t, to reach r= 2m;
though it only takes a finite proper time. This seems to indicate that to explore the situation
further, and in particular to understand the region r< 2m we must consider alternative
coordinate systems. Let us never forget that the whole spirit of General Relativity is that
coordinate systems themselves have no direct relevance: the physics we are trying to
understand is independent of any coordinate system. The coordinate transformation intro-
duced by Eddington and Finkelstein is a significant advance in understanding the peculiar-
ities of the surface r= 2m.

The most straightforward way to approach this transformation is to consider radial null
geodesics in Schwarzschild space-time given by the metric (5.60)

ds2 ¼ � 1� 2m

r

� �
c2 dt2 þ 1� 2m

r

� ��1

dr2 þ r2ðdθ2 þ sin2θ d�2Þ: (7:118)

For these geodesics ds2 = 0 and θ and � are both constant so we have (_t ¼ dt
ds

etc.)

0 ¼ � 1� 2m

r

� �
c2 _t2 þ 1� 2m

r

� ��1

_r2: (7:119)

We have in addition, for radial motion, Equation (5.57),

1� 2m

r

� �
_t ¼ b ¼ const: (7:120)

Substituting (7.120) into (7.119) gives _r2 ¼ b2, so

_r ¼ � cb: (7:121)
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The last two equations imply that

dr
dt

¼ _r
_t
¼ � c

r � 2m

r
; (7:122)

which can be integrated to give

ct ¼ �ðr þ 2m ln jr � 2mjÞ þ const: (7:123)

The + sign refers to outgoing, and the− sign to incoming, rays, and these rays are sketched
in Fig. 7.1. Note that for outgoing rays, if r> 2m, r increases as t increases, but when r< 2m
(that is, inside the surface r= 2m), r increases while t decreases. Similar and opposite
remarks apply to incoming rays: for them, when r > 2m, r decreases while t increases, but
in the region r< 2m, r and t decrease (or increase) together. In both cases the singular
behaviour of the rays at r= 2m is evident. In fact from the metric (7.118) we see that the
signature inside the Schwarzschild surface is

r52m : þ�þþ;

in contrast with that outside

r42m : �þþþ :

As r crosses from >2m to <2m, it changes from being a spacelike parameter to a timelike
one; and the time t makes the opposite change, from timelike to spacelike. Hence, as in the
world outside the Schwarzschild surface time inevitably increases (it cannot be made to run
backwards), so inside the Schwarzschild surface it is r which will inevitably decrease.

Now let us introduce a new time coordinate

�t ¼ t � 2m

c
ln

r

2m
� 1

 ; �r ¼ r; (7:124)

t

0
1

r

Outgoing

Incoming

Fig. 7.1 Incoming and outgoing light rays in a Schwarzschild field.
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so that

d�t ¼ dt � 1

c

2m

r � 2m
dr:

Taking the upper (+) sign above, the line element (7.118) becomes

ds2 ¼ � 1� 2m

r

� �
c2 d�t 2 þ 1þ 2m

r

� �
dr2 þ 4m

r
c d�t dr þ r2 dΩ2: (7:125)

This is the Eddington–Finkelstein form of the metric.11 Note that g11, the coefficient of dr
2,

is regular at r= 2m, so the introduction of �t in effect extends the range of the radial
coordinate in the Schwarzschild solution from 2m < r<∞ in (7.118) to 0 < r<∞ in
(7.125). Now let us consider radial null geodesics in advanced Eddington–Finkelstein
coordinates. From (7.125) we have

0 ¼ � 1� 2m

r

� �
c2 d�t 2 þ 1þ 2m

r

� �
dr2 þ 4m

r
c d�t dr;

from which

1

c

d r
d�t

¼ �1 or
r � 2m

r þ 2m
: (7:126)

These equations, giving the gradients of the light cones, are sketched in Fig. 7.2. It is seen
that light rays coming in from r> 2m will cross the surface r= 2m smoothly and reach r= 0.

ct

ct

r2m

r = 2m

r

Fig. 7.2 Light cones and light rays obeying (7.126) – a black hole.

11 Eddington (1924), Finkelstein (1958).
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Outgoing rays, originating from r> 2m, will eventually reach r=∞, the light cones tilting
progressively towards their Minkowski value as r → ∞. Rays originating from r< 2m,
however, will never escape to the region r > 2m: they all eventually reach r= 0. Thus the
surface r= 2m acts as a one-way membrane: light may cross it going in but not coming out. A
similar conclusion holds also for particles: since they travel along geodesics inside the light
cone, they may cross the Schwarzschild surface from r> 2m to r < 2m but once inside they
may not leave. Consequently an observer outside this surface will never be able to detect
light signals or particles originating inside it. To an outside observer the Schwarzschild
surface is in effect a boundary of space-time. It is an event horizon, such that timelike or null
geodesics from events inside it will never reach the outside. An object with such an event
horizon is a black hole.

These conclusions were reached taking the + sign in (7.124). Now consider what happens
when we take the − sign. The sign of the d�t dr term in (7.125) is changed so null geodesics
(7.126) become

1

c

d r
d�t

¼ 1 or � r � 2m

r þ 2m

� �
: (7:127)

These rays are sketched in Fig. 7.3, and we see that light can pass through the surface r= 2m
from inside to outside but not vice versa; and, as before, a similar conclusion holds for
particles. Particles and light rays approaching from r=∞ are prevented from entering the
region, so to an observer inside the Schwarzschild surface, this surface is an event horizon,
which it is not to an observer outside. An object of this type is called a white hole. This is, in
an obvious sense, a time-reversed black hole (Fig. 7.3 upside down looks like Fig. 7.2.) It
seems likely that black holes exist in nature, but unlikely that white holes do. This might be

ct

ct

r2m

r = 2m

r

Fig. 7.3 Light cones and light rays obeying (7.127) – a white hole.
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thought strange, in view of the fact that Einstein’s field equations are invariant under time
reversal. On the other hand, the wave equations of Maxwell’s electrodynamics are invariant
under time reversal, but nature seems only to make use of the retarded potential solutions,
not the advanced potential ones.

We may conclude that the Eddington–Finkelstein coordinates give us a fuller under-
standing of the Schwarzschild solution. The advanced and retarded time parameters give
two differing versions of the space-time geometry of this solution. A further development,
however, took place when the coordinates introduced by Kruskal and Szekeres were able to
display both of these geometries – and two more also – in one diagram. This is the subject of
the next section.

7.5 Kruskal–Szekeres coordinates

Instead of the coordinate �t introduced in (7.124) above, let us now introduce the (closely
related) advanced time coordinate v by

cv ¼ ct þ r þ 2m ln
r

2m
� 1

� �
; (7:128)

then

dv ¼ dt þ 1

c

r

r � 2m
dr � dt � dt�: (7:129)

From the Schwarzschild metric (7.118) we see that for radial photons

dt ¼ 1

c

r

r � 2m
dr ¼ �dt�;

so dt* is the (Schwarzschild coordinate) time for a radial (incoming) photon to travel a
distance dr. Then, from (7.118)

ds2 ¼ � 1� 2m

r

� �
c2 dt2 þ 1� 2m

r

� ��1

dr2 þ r2 dΩ2

¼ � 1� 2m

r

� �
c dv� r

r � 2m
dr

h i2
þ 1� 2m

r

� ��1

dr2 þ r2 dΩ2;

or

ds2 ¼ � 1� 2m

r

� �
c2 dv2 þ 2c dv dr þ r2 dΩ2: (7:130)

This line element is not invariant under v → − v, which corresponds to t → − t and the
substitution of inward-travelling rays by outward-travelling ones. Corresponding to this
time reversal we find another section of the Schwarzschild solution. Introduce the retarded
time coordinate u by
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cu ¼ ct � r � 2m ln
r

2m
� 1

� �
; (7:131)

so that

cðv� uÞ ¼ 2r þ 4m ln
r

2m
� 1

� �
: (7:132)

Replacing (7.130) we have

ds2 ¼ � 1� 2m

r

� �
c2 du2 � 2c du dr þ r2 dΩ2: (7:133)

Writing the relations (7.128) and (7.131) as

u ¼ t � r�; v ¼ t þ r�; (7:134)

the ingoing and outgoing light rays have the equations v = const and u = const respectively,
as shown in Fig. 7.4, and u and v are therefore null coordinates. It is straightforward to see
that

c2 du dv ¼ c2 dt þ 1

c

r

r � 2m
dr

� �
dt � 1

c

r

r � 2m
dr

� �

¼ c2 dt2 � 1� 2m

r

� ��2

dr2

so that

c2 1� 2m

r

� �
du dv ¼ 1� 2m

r

� �
c2 dt2 � 1� 2m

r

� ��1

dr2

and the Schwarzschild metric is, in null coordinates

ds2 ¼ �c2 1� 2m

r

� �
du dvþ r2 dΩ2: (7:135)

Outgoing
ray

Ingoing
ray

r *

t

u = t − r * v = t + r *

Fig. 7.4 Advanced (v) and retarded (u) null coordinates with ingoing (v = constant) and outgoing (u =

constant) light rays.

256 Gravitational collapse and black holes



Now instead of u and v let us introduce the coordinates

z ¼ 1=2ðecv=4m þ e�cu=4mÞ; w ¼ 1=2ðecv=4m � e�cu=4mÞ: (7:136)

On substituting (7.128) and (7.131) we find

z ¼ r

2m
� 1

� �1=2
er=4m coshðct=4mÞ; (7:137)

w ¼ r

2m
� 1

� �1=2
er=4m sinhðct=4mÞ: (7:138)

Clearly,

z2 � w2 ¼ r

2m
� 1

� �
er=2m; (7:139)

w

z
¼ tanhðct=4mÞ ¼ 1� e�ct=2m

1þ e�ct=2m
; (7:140)

and after some algebra it follows that

dz ¼ α cosh
ct

4m

� �
dr þ β sinh

ct

4m

� �
c dt; (7:141)

dw ¼ α sinh
ct

4m

� �
dr þ β cosh

ct

4m

� �
c dt; (7:142)

where

α2 ¼ r2

32m3ðr � 2mÞ e
r=2m; β2 ¼ ðr � 2mÞ

32m3
er=2m: (7:143)

Then

dz2 � dw2 ¼ α2 dr2 � β2c2 dt2;

hence

32m3

r
e�r=2mðdz2 � dw2Þ ¼ r

r � 2m
dr2 � r � 2m

r
c2 dt2

and the Schwarzschild line element is

ds2 ¼ 32m3

r
e�r=2mðdz2 � dw2Þ þ r2ðz;wÞ dΩ2: (7:144)

This is the Schwarzschild metric in Kruskal–Szekeres (or simply Kruskal) coordinates.12

Restricted to radial motion (θ, � constant) the line element is

12 Kruskal (1960), Szekeres (1960).
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ds2 ¼ 32m3

r
e�r=2mðdz2 � dw2Þ; (7:145)

which is conformally flat in the zw plane (i.e. an overall factor multiplied by the pseudo-
Euclidean line element). Null radial geodesics ds2 = 0 have the equations dz= ± dw – straight
lines in the zw plane. This plane is shown in Fig. 7.5. The connection between z,w on the one
hand and r, t on the other is given by Equations (7.139) and (7.140).

The Kruskal diagram has four sections, marked I, II, III, IV in Fig. 7.5. Region I represents
the exterior r > 2m of the Schwarzschild metric. It is bounded by z = ±w, z > 0, i.e. by r = 2m,
t = ±∞. The z axis is t = 0. The light cones are displayed, and one can see for example that a
timelike geodesic could start on the z axis and cross the line r = 2m from region I into region
II. The Eddington–Finkelstein coordinates cover both of these regions. The geodesic ends
on r = 0, a genuine singularity.

From the structure of the light cones one can see that starting from region I one can enter
region II, but not regions III or IV. Once r < 2m, in region II, all null and timelike geodesics
eventually reach r = 0; that is, r inevitably decreases – it plays a role like time in region

w

Future
singularity

Past
singularity

(a)

r = 0

r = 2m
t = +∞

r = 2m
t = – ∞r = 0

r = constII

IV

III I
z

(b)

Outgoing

Incoming

Fig. 7.5 (a) Kruskal diagram with regions I, II, III and IV marked; (b) incoming (r increases, t increases) and

outgoing (r decreases, t increases) light rays in the Kruskal diagram.
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I (except that time inevitably increases!). Region II is a black hole: everything can go in,
nothing can come out.

Our world (region I) cannot influence region III but it can be influenced by it: outgoing
light rays can travel from III to I. In fact, all light rays and material objects (following
timelike geodesics) eventually leave region III but nothing can enter it – it is a white hole.
Region III is remote from us: nothing happening there can be influenced by or have an
influence on anything in region I.

The Kruskal diagram makes evident the time inversion symmetry of the Schwarzschild
solution (deriving, of course, from that of the Einstein field equations). In a white hole, time
goes ‘backwards’ and gravity is repulsive rather than attractive. Nature does not make use of
this; so perhaps the space-time represented by the whole Kruskal diagram does not corre-
spond to anything in nature. One example of such a possibility, suggested by the diagram, is
the Einstein–Rosen bridge and the phenomenon of ‘wormholes’.

7.6 Einstein–Rosen bridge and wormholes

In Kruskal–Szekeres coordinates we are considering a 4-dimensional space-time with
coordinates z, w, θ and �, and line element (7.144). Let us take the time-slice (spacelike
hypersurface) corresponding to w = 0 (which, from (7.138) is also t= 0) and at the same time
put θ= π/2 (the equator of a 2-sphere). Then

ds2 ¼ 32m3

r
e�r=2m dz2 þ r2 d�2 ¼ r

r � 2m

� �
dr2 þ r2 d�2: (7:146)

This is the metric on a (2-dimensional) surface which is a paraboloid of revolution, got by

rotating the parabola y=
z2

8m
+ 2m about the z axis. This is shown in Fig. 7.6. Putting y → r

we have

r ¼ z2

8m
þ 2m; dr ¼ z

4m
dz; dr2 ¼ 1

2m
ðr � 2mÞ dz2;

Fig. 7.6 A paraboloid of revolution about the vertical axis, representing a Schwarzschild throat, or

wormhole, or Einstein–Rosen bridge.
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hence on the paraboloid surface

dz2 ¼ 2m

r � 2m

� �
dr2:

Taking a flat 3-dimensional space with cylindrical coordinates r, �, z and metric

ds2 ¼ dr2 þ r2 d�2 þ dz2;

then on the paraboloid surface in this space

ds2 ¼ dr2 1þ 2m

r � 2m

� �
þ r2 d�2 ¼ r

r � 2m

� �
dr2 þ r2 d�2;

as in (7.146) above. Note that the flat 3-dimensional space into which this surface is
embedded is not physical 3-dimensional space. Note also that one space dimension is
suppressed in (7.146) so the diagram in Fig. 7.6 is not a ‘picture’ of the construction in
any obvious sense, but only a representation of it.

This construction is called the ‘Einstein–Rosen bridge’, or Schwarzschild throat, or
wormhole.13 It is obtained by taking the spacelike hypersurface w = 0, i.e. passing from
z> 0 to z < 0 , from region I to region III in the Kruskal diagram. On taking a different
hypersurface w = ± w0, such that the passage from I to III passes through II or IV and
encounters the singularity r= 0, the paraboloids of revolution above are replaced by surfaces
of revolution which are qualitatively different, and are shown in Fig. 7.7. In the second
diagram here the two space-times are not connected. Hence the complete Kruskal diagram
corresponds to an evolutionary, time-dependent, picture: as w (a timelike coordinate)
evolves from −∞ to 0, and then to +∞, the two space-times, originally separate, become
joined and then separate again. Hence the wormhole only lasts for a finite time – actually, a
rather short time. It is initially surprising that the Kruskal extension of the Schwarzschild
solution actually converts a static solution into a non-static one. This is because in regions
I and III the parameter z is spacelike, but in II and IV it becomes timelike so a solution
containing regions I and II is bound to feature time evolution. The germ of these observa-
tions was already contained in a remark in Finkelstein’s paper (1958), about the lack of time
reversal symmetry in a supposedly ‘static’ solution.

z

w = 0

z

w = ±w0

Fig. 7.7 A paraboloid of revolution at w = 0 has evolved from, and becomes, at w =±w0, two separated

space-times.

13 Einstein & Rosen (1933).
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7.7 Conformal treatment of infinity: Penrose diagrams

The technique of performing conformal transformations, or rescalings, of the metric gives a
way of adjoining the ‘points at infinity’ in a space into the finite region. This means that the
whole of the (infinite) manifold of space-time may be represented on a finite diagram. The
resulting diagrams, known as Penrose diagrams, afford an elegant way of studying particular
solutions, for example, the Kruskal diagram, as well as giving an insight into the causal
structure of space-time. Let us begin by considering Minkowski space-time.

The metric for Minkowski space-time in spherical polar coordinates

d~s2 ¼ �c2 dt2 þ dr2 þ r2ðdθ2 þ sin2θ d�2Þ
may be re-expressed in null coordinates (advanced and retarded time coordinates)

u ¼ ct � r; v ¼ ct þ r: (7:147)

Since du dv = c2 dt2 − dr2 we have

d~s2 ¼ �du dvþ 1

4
ðu� vÞ2ðdθ2 þ sin2θ d�2Þ: (7:148)

Now introduce the conformal factor

Ω2 ¼ 1

ð1þ u2Þð1þ v2Þ (7:149)

to give a rescaled metric

ds2 ¼ Ω2 d~s2 ¼ � du dv
ð1þ u2Þð1þ v2Þ þ

1

4

ðu� vÞ2
ð1þ u2Þð1þ v2Þ ðdθ

2 þ sin2θ d�2Þ: (7:150)

Introduce the new coordinates

u ¼ tan p; v ¼ tan q (7:151)

so that

ðu� vÞ2
ð1þ u2Þð1þ v2Þ ¼ sin2ðp� qÞ

and (7.150) becomes

ds2 ¼ �dp dqþ 1

4
sin2ðp� qÞ½dθ2 þ sin2θ d�2�; (7:152)

with

� π  p; q  π: (7:153)
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This is the conformally rescaled metric of Minkowski space in null coordinates.14 The first
term (dp dq) has the same form as the term du dv in the usual Minkowski metric (7.148) but
it covers only a compact region. Let us put (cf. (7.147))

p ¼ cT � R; q ¼ cT þ R: (7:154)

In terms of the coordinates r, twe may represent the different types of infinity in Minkowski
space as in Fig. 7.8(a). The past and future light cones extend to past and future null infinity,
and in turn separate past and future timelike infinity on the one hand, and spacelike infinity
on the other. In terms of the coordinates R and T, however, these infinities are now in the
finite domain, as shown in Fig. 7.8(b). Null future infinity and null past infinity are
represented by the lines I+ and I− (pronounced scri plus and scri minus). Timelike future
and timelike past infinity are represented by the points i+ and i− and the two points i0

represent spacelike infinity. In terms of the coordinates these lines and points are

iþ: cT ¼ π;

i�: cT ¼ �π;

i0: q ¼ �p ¼ π; R ¼ π; p ¼ �q ¼ π; R ¼ �π;

Iþ: cT � R ¼ π;

I�: cT � R ¼ �π:

(7:155)

In the compactification of the full 4-dimensional Minkowski space-time each point in the
diagram of Fig. 7.8 becomes a 2-sphere. Putting θ= π/2 in (7.152) (so with only one
dimension suppressed), the compactified diagram becomes as shown in Fig. 7.9.

Let us now consider the Schwarzschild solution in Kruskal coordinates. We begin with
the metric (7.135)

ds2 ¼ �c2 1� 2m

r

� �
du dvþ r2 dΩ2; (7:156)

where u and v are the retarded and advanced time coordinates (7.128) and (7.131). Now
introduce new coordinates U, V:

U ¼ �4me�u=4m; V ¼ 4mev=4m; (7:157)

so that

2m

r
e�r=2m dU dV ¼ 1� 2m

r

� �
du dv;

and the above metric becomes

ds2 ¼ � 2mc2

r
e�r=2m dU dV þ r2 dΩ2: (7:158)

14 It should be noted that conformal rescalings of the type discussed here are to be distinguished from conformal
transformations on coordinates. These latter transformations may be combined with those of the Poincaré group
to give an enlarged symmetry group under which some field theories (for example Maxwell’s electrodynamics)
are invariant. See for example Fulton et al. (1962), Wess (1960).
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The parameters u, v have the same range of values as in the Penrose diagram for Minkowski
space, Fig. 7.10, but this range is not shared by U and V:

u ¼ �1; U ¼ �1 : v ¼ �1; V ¼ 0

u ¼ 0; U ¼ �4m : v ¼ 0; V ¼ 4m

u ¼ 1; U ¼ 0 : v ¼ 1; V ¼ 1
We see that −∞ ≤ U ≤ 0, whereas 0 ≤ V ≤ ∞, so the Penrose diagram becomes the one
shown in Fig. 7.10, which is not maximal. It may be extended by adding another diagram

Timelike future infinity

Timelike past infinity

(a)

Past null
infinity

Future null
infinity

Future null
infinity

Past null
infinity

Spacelike
infinity

Spacelike
infinity

u = ∞,  
 p

 = π v = ∞,  q = π

v = – ∞,   q = – π

u = – ∞,  
 p

 = – π

� + � +

�0

� 0

�+

� +  :  Timelike future ∞

� –  :  Timelike past ∞

� 0  :  Spacelike ∞

�+  :  null future ∞

�–  :  null past ∞
�–

(b)

� – � –

T

X

Null lines X = cT

Fig. 7.8 (a) Infinities in Minkowski space-time: timelike past and future, null past and future, and

spacelike; (b) these infinities in the finite domain, in a compactified diagram.
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with U≥ 0, V≤ 0, as in Fig. 7.11. The left half of this diagram differs from the right half by
time reversal, t→ −t . The diagram then represents the Schwarzschild solution (in Kruskal
coordinates) over the whole range−∞≤U, V≤∞. Region II is the time-reversed mirror of
region I. The horizontal zig-zag lines represent the singularity r= 0 in the past and the future.

I +

I –

� +

� –

Null geodesic
Spacelike geodesic

Timelike geodesic

Fig. 7.9 Compactified Minkowski space-time with one dimension suppressed.

u = ∞

u = – ∞

v = ∞

v = – ∞

I 0I 0

I +

I –

U = 0

U = – ∞

V = ∞

V = 0

Fig. 7.10 The Penrose diagram for the parameters u, v translated into one for U, V.

u = ∞

u = 0

v = 0

v = –∞

I 0 I 0II

III

IV

I +

� + � +

� – � –

I –

u = 0

u = –∞

v = ∞

v = 0 

I

I +

I –

r = 0

r = 0

Fig. 7.11 Penrose diagram for the Kruskal solution.
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For an observer in region I all null rays U > 0 reach null future infinity I+: the null ray U = 0
(r= 2m, t= +∞) is the last (retarded) null ray to reach I+, hence the ray U= 0 is an event
horizon for observers in region I. Similarly V = 0 is an event horizon for observers in region
II. The regions III and IV are therefore black holes for these observers.

Let us revert to some more physical considerations regarding black holes. The discussion
above was related to the (interior) Schwarzschild solution and therefore describes static
black holes (modulo the observations made about wormholes). Since real stars, however,
rotate, we must ask if there is a solution of the field equations which corresponds to a
rotating source. And indeed there is; it is the Kerr solution and will be discussed in the next
section. At the close of this section, however, it is perhaps appropriate to mention that there
is also a solution of the field equations describing a star with electric charge. This is actually
a solution of the field equations (5.24), with the energy-momentum tensor that of the
electromagnetic field: it therefore describes a (non-rotating) black hole carrying electric
charge and is known as the Reissner–Nordstrøm solution.15 It has the form

ds2 ¼ �c2 1� 2m

r
þ q2

r2

� �
dt2 þ 1� 2m

r
þ q2

r2

� ��1

dr2 þ r2 dΩ2; (7:159)

with

q2 ¼ GQ2

4 πε0c4
; Q ¼ electric charge:

This solution describes the gravitational effect of electric charge; an electrically charged
object (star) gives rise to an electromagnetic field, whose energy-momentum tensor con-
tributes, via Einstein’s field equations, to the curvature of space. The geometry of space-time
is therefore modified by electric charge, as expressed in the Reissner–Nordstrøm solution.
As far as the real world is concerned, however, I think it is reasonable to take the view that,
so far as we know, this is a physically unrealistic situation. Stars are electrically neutral, so
while the Reissner–Nordstrøm solution might be interesting as a mathematical exercise, it
probably does not have physical relevance. For the interested reader there are many good
accounts of this solution in the literature.

7.8 Rotating black holes: Kerr solution

We begin by introducing the Newman–Penrose null tetrad,16 which is of great use in
modern relativity theory and turns out to offer an approach to the Kerr solution. In R3 the
three basis vectors are, in Cartesian coordinates,

e1 ¼ i ¼ ð1; 0; 0Þ; e2 ¼ j ¼ ð0; 1; 0Þ; e3 ¼ k ¼ ð0; 0; 1Þ;

15 Reissner (1916), Nordstrøm (1918).
16 Newman & Penrose (1962).
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respectively perpendicular to the planes x = const, y = const and z = const. Then the
components are i1 = 1, j3 = 0, etc. The metric tensor is δmn and we have the relation

δmn ¼ im in þ jm jn þ km kn;

as may easily be checked. To progress to Minkowski space-time the 3-vectors above are
upgraded to spacelike 4-vectors

iμ ¼ ð0; 1; 0; 0Þ; jμ ¼ ð0; 0; 1; 0Þ; kμ ¼ ð0; 0; 0; 1Þ (7:160)

and to them we add the timelike 4-vector

uμ ¼ ð�1; 0; 0; 0Þ (7:161)

so the Minkowski metric tensor may be written

ημ v ¼ �uμ uv þ iμ iv þ jμ jv þ kμ kv ¼ diagð�1; 1; 1; 1Þ; (7:162)

consistent with our metric convention. We also have u μ = (1, 0, 0, 0), i μ= (0, 1, 0, 0), etc.,
giving

u μ uμ ¼ �1; i μ iμ ¼ j μ jμ ¼ k μ kμ ¼ þ1; (7:163)

u μ iμ ¼ u μ jμ ¼ u μ kμ ¼ 0: (7:164)

Then, due to the non-positive definite metric, we may construct two null vectors

lμ ¼ 1ffiffiffi
2

p ðuμ þ iμÞ; nμ ¼ 1ffiffiffi
2

p ðuμ � iμÞ; (7:165)

with inverses

uμ ¼ 1ffiffiffi
2

p ðlμ þ nμÞ; iμ ¼ 1ffiffiffi
2

p ðlμ � nμÞ: (7:166)

The following relations are easily checked:

lμ nμ ¼ 1

2
ðuμ uμ � iμ iμÞ ¼ �1;

lμ lμ ¼ 1

2
ðu μ uμ þ i μ iμÞ ¼ 0; n μ nμ ¼ 0;

(7:167)

showing that we have indeed constructed two null vectors from two vectors (uμ and iμ) of the
basis set (7.160), (7.161) – one of which is timelike and one spacelike. We now want to
construct two more null vectors, using combinations of j μ and k μ, which are both spacelike.
To do this take the complex combinations

m μ ¼ 1ffiffiffi
2

p ðj μ þ i k μÞ; �m μ ¼ 1ffiffiffi
2

p ðj μ � i k μÞ; (7:168a)

(with i=
ffiffiffiffiffiffiffi�1

p
), with their inverses
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jμ ¼ 1ffiffiffi
2

p ðmμ þ �mμÞ; k μ ¼ �iffiffiffi
2

p ðm μ � �mμÞ: (7:168b)

Then

m μ mμ ¼ �m μ �mμ ¼ 0;m μ �m μ ¼ 1; (7:169)

showing that mμ and �mμ are indeed null (but not orthogonal). We also have the relations

m μ lμ ¼ m μ nμ ¼ �m μ lμ ¼ �m μ nμ ¼ 0: (7:170)

Then choosing for the tetrad components (see Section 6.5)

hμð0Þ ¼ lμ; hμð1Þ ¼ nμ; hμð2Þ ¼ mμ; hμð3Þ ¼ �mμ; (7:171)

we have the tangent space metric (or frame metric)

gðαÞðβÞ ¼ hμðαÞ hμðβÞ; (7:172)

with components, for example,

gð0Þð0Þ ¼ lμ lμ ¼ 0; gð0Þð1Þ ¼ gð1Þð0Þ ¼ lμ nμ ¼ �1; gð2Þð3Þ ¼ gð3Þð2Þ ¼ mμ �mμ ¼ 1;

or

gðαÞðβÞ ¼
0�1 0 0

�1 0 0 0
0 0 0 1
0 0 1 0

0
BB@

1
CCA: (7:173)

The world space metric is, from (7.162), (7.166), (7.168b),

gμν ¼ ημν ¼� 1

2
ðlμ þ nμÞðlν þ nνÞ þ 1

2
ðlμ � nμÞðlν � nνÞ

þ 1

2
ðmμ þ �mμÞðmν þ �mνÞ � 1

2
ðmμ � �mμÞðmν � �mνÞ

¼ �lμ nν � nμ lν þ �mμ mν þ mμ �mν; (7:174)

with the equivalent contravariant form

g μν ¼ �lμ nν � nμ lν þ m μ �mν þ �m μ mν: (7:175)

The above equations apply to Minkowski space-time. Let us now, as the next step towards
the Kerr solution, find expressions for the tetrads l μ, n μ, m μ and �mμ relevant to the
Schwarzschild metric in advanced Kruskal coordinates. This is, from (7.130),

gμν ¼
�c2 1� 2m

r

� �
c 0 0

c 0 0 0
0 0 r2 0
0 0 0 r2 sin2θ

0
BBBB@

1
CCCCA; (7:176)

with the corresponding contravariant components
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gμν ¼

0
1

c
0 0

1

c
1� 2m

r

� �
0 0

0 0
1

r2
0

0 0 0
1

r2 sin2θ

0
BBBBBBBBB@

1
CCCCCCCCCA
: (7:177)

This is equivalent to the following null tetrad

lμ ¼ ð0; 1; 0; 0Þ ¼ ∂r;

n μ ¼ � 1

c
;� 1

2
1� 2m

r

� �
; 0; 0

� �
¼ � 1

c
∂ν � 1

2
1� 2m

r

� �
∂r;

m μ ¼ 1

r
ffiffiffi
2

p 0; 0; 1;
i

sin θ

� �
¼ 1

r
ffiffiffi
2

p ∂θ þ i cosec θ ∂�
	 


;

�m μ ¼ 1

r
ffiffiffi
2

p 0; 0; 1;� i
sin θ

� �
¼ 1

r
ffiffiffi
2

p ð∂θ � i cosec θ ∂�Þ;

(7:178)

as may easily be checked: for example

g00 ¼ �2l0 n0 þ 2m0 �m0 ¼ 0;

g01 ¼ �l0 n1 � n0 n1 þ m0 �m1 þ �m0 m1 ¼ 1

c
;

g11 ¼ �2l1 n1 þ 2m1 �m1 ¼ 1� 2m

r
;

and so on, as in (7.177).
The key to finding the Kerr solution is, following Newman and Janis,17 to make r

complex (with �r its complex conjugate) and replace the tetrad above by

lμ ¼ ð0; 1; 0; 0Þ ¼ ∂r;

n μ ¼ � 1

c
;� 1

2
þ m

2

1

r
þ 1

�r

� �
; 0; 0

� �
¼ � 1

c
∂ν � 1

2
M ∂r;

mμ ¼ 1

�r
ffiffiffi
2

p 0; 0; 1;
i

sin θ

� �
¼ 1

�r
ffiffiffi
2

p ð∂θ þ i cosec θ ∂�Þ;

�mμ ¼ 1

r
ffiffiffi
2

p 0; 0; 1;� i
sin θ

� �
¼ 1

r
ffiffiffi
2

p ð∂θ � i cosec θ ∂�Þ;

(7:179)

with

M ¼ 1� m

r
� m

�r
: (7:180)

(Note that l μ and n μ are still real, and m μ and �m μ the complex conjugates of each other.)
Now perform the transformations

17 Newman & Janis (1965).
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r ¼ r0 � ia
c
cos θ; v ¼ v0 � ia

c2
cos θ; ðwith r0; v0 realÞ; (7:181)

then the tetrad becomes

l0μ ¼ ð0; 1; 0; 0Þ;

n0μ ¼ � 1

c
;� 1

2
þ mr0

r02 þ a2
c2 cos

2θ
; 0; 0

 !
;

m0μ ¼ 1

r0 þ ia
c cos θ

	 
 ffiffiffi
2

p � ia
c
sin θ;� ia

c
sin θ; 1;

i
sin θ

� �
;

�m0μ ¼ 1

r0 � ia
c cos θ

	 
 ffiffiffi
2

p ia
c
sin θ;

ia
c
sin θ; 1;� i

sin θ

� �
:

(7:182)

ðThese equations follow quite straightforwardly from the usual formula

V 0μ ¼ ∂x0μ

∂xν
V ν;

so for example

m00 ¼ ∂ðcv0Þ
∂ðcvÞ m

0 þ ∂ðcv0Þ
∂θ

m2 ¼ � ia
c
sin θ:

1

�r
ffiffiffi
2

p :

�

The contravariant components of the metric tensor then follow from (7.175), with (7.182)
(and dropping the primes); for example

g00 ¼ �2l0n0 þ 2m0 �m0 ¼ a2 sin2θ
ρ2

;

where we have defined

ρ2 ¼ r2 þ a2

c2
cos2θ: (7:183)

We find

gμ ν ¼

ða=cÞ2 sin2θ
ρ2

r2 þ a2=c2

ρ2
0 � a

cρ2

r2 þ a2=c2

ρ2
r2 þ a2=c2�2mr

ρ2
0 � a

cρ2

0 0
1

ρ2
0

� a
cρ2

� a
cρ2

0
1

ρ2 sin2θ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (7:184)

The parameter a, introduced in the transformation (7.181), is a key feature of this metric.
Below we shall justify its interpretation as the angular momentum of the source. It is
straightforward to calculate the covariant components gμν by simply finding the inverse of
(7.184) (which has determinant −(ρ4 sin2θ)−1). The resulting line element is
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ds2 ¼� 1� 2mr

ρ2

� �
c2 dv2 þ 2c dv dr � 4mra

cρ2
sin2θ c dv d�

� 2a

c
sin2θ dr d�þ ρ2 dθ2 þ r2 þ a2

c2

� �
sin2θ þ 2mra2

c2ρ2
sin4θ

� �
d�2: (7:185)

Now perform the coordinate transformations

c dv ¼ c dt þ r2 þ a2=c2

Δ
dr; d� ¼ dψ þ a

cΔ
dr; (7:186)

with

Δ ¼ r2 þ a2

c2
� 2mr: (7:187)

After some algebra (and relabelling ψ → �) we find

ds2 ¼ � 1� 2mr

ρ2

� �
c2 dt2 � 4mra sin2θ

ρ2
d� dt þ ρ2

Δ
dr2 þ ρ2 dθ2

þ r2 þ a2

c2
þ 2mra2 sin2θ

c2ρ2

� �
sin2θ d�2: (7:188)

This is the Kerr solution in Boyer–Linquist coordinates.18 Equivalent forms are

ds2 ¼ � Δ
ρ2

c dt � a

c
sin2θ d�

h i2
þ ρ2

Δ
dr2 þ ρ2 dθ2

þ sin2θ
ρ2

r2 þ a2

c2

� �
d�� a dt

� �2
(7:189)

and

ds2 ¼ �c2 dt2 þ 2mr

ρ2
c dt � a

c
sin2θ d�

h i2
þ ρ2

Δ
dr2 þ ρ2 dθ2

þ r2 þ a2

c2

� �
sin2θ d�2: (7:190)

(Note that when a = 0 these reduce, as expected, to the Schwarzschild form (5.37).) The
metric tensor (7.188) is

gμν ¼

� 1� 2mr

ρ2

� �
0 0 � 2mra sin2θ

cρ2

0
ρ2

Δ
0 0

0 0 ρ2 0

� 2mra sin2θ
cρ2

0 0 r2 þ a2

c2
þ 2mra2 sin2θ

c2ρ2

� �
sin2θ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (7:191)

18 Kerr (1963), Boyer & Lindquist (1967).
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which may be compared with the metric (6.93) for the gravitomagnetic field. In fact, taking
an approximation for large r (7.191) becomes

gμν ¼

� 1� 2m

r

� �
0 0 � 2ma

cr
sin2θ

0 1þ 2m

r
0 0

0 0 r2 0

� 2ma

cr
sin2θ 0 0 r2 sin2θ

0
BBBBBBB@

1
CCCCCCCA
; (7:192)

and comparing the g03 terms in (6.93) and above, recalling that m ¼ GM

c2
, we see that

a ¼ J

Mc
, essentially the angular momentum per unit mass of the source. This is the

interpretation of the parameter a occurring in the Kerr solution, and introduced in
Equation (7.181). It is clear that in the limit r→∞ (7.192) becomes the Minkowski metric.
It is also clear, in general terms, that as a → 0 the Kerr metric (7.191) becomes the
Schwarzschild metric. This solution was found by Kerr in 1963, though his reasoning was
different from that given above, being based on the fact that the solution is of an ‘algebrai-
cally special’ type of solution to Einstein’s vacuum field equations. In any case we may
remark that the Kerr solution is an exact two-parameter solution to the field equations, the
Schwarzschild solution being a one-parameter one.

In closing this section it may be noted that the generalisation of the Kerr solution to that of
a rotating source with electric charge is the Kerr–Newman solution

ds2 ¼� Δ
ρ2

c dt � a

c
sin2θ d�

h i2
þ ρ2

Δ
dr2 þ ρ2 dθ2

þ sin2θ
ρ2

r2 þ a2

c2

� �
d�� a dt

� �2

where ρ2 is given by (7.183), as before, but Δ is now given by

Δ ¼ r2 þ a2

c2
� 2mr þ q2;

a generalisation of (7.187).

7.9 The ergosphere and energy extraction from
a black hole

In the Schwarzschild solution the surface r= 2m is an event horizon (EH) (see below
Equation (7.126)). It is also a surface of infinite red-shift (SIR), as we shall now show. In
the Kerr solution these surfaces are different. The area between them is called the ergosphere
and it is a region in which there is some interesting physics.
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We begin by investigating the event horizon more fully and then finding what it is in the
Kerr solution. A hypersurface has the equation

f ðx0; x1; x2; x3Þ ¼ 0

and the normal to it is the (covariant) vector nμ ¼ ∂f
∂xμ

. In the case of the Schwarzschild

solution the EH is given by r − 2m= 0, so the function f may be written

f ¼ r � 2m ¼ x1 � 2m;

and

nμ ¼ ð0; 1; 0; 0Þ:
The hypersurface is null if n μ nμ= 0. To find n μ we need g μν. Working in Eddington–
Finkelstein coordinates the covariant metric tensor is, from (7.125),

gμν ¼

� 1� 2m

r

� �
2m

r
0 0

2m

r
1þ 2m

r
0 0

0 0 r2 0
0 0 0 r2 sin2θ

0
BBBBB@

1
CCCCCA; (7:193)

from which g =− r4 sin2θ and

gμν ¼

� 1þ 2m

r

� �
2m

r
0 0

2m

r
1� 2m

r
0 0

0 0
1

r2
0

0 0 0
1

r2 sin2θ

0
BBBBBBBBB@

1
CCCCCCCCCA
; (7:194)

so

n μ nμ ¼ g μν nμ nν ¼ g11 ¼ 1� 2m

r
;

that is, n μ nμ= 0 on the hypersurface r= 2m, as we aimed to show.
Now let us turn to the Kerr solution, for which gμν is (7.191) above. The contravariant g

μν is

gμν ¼

�
r2 þ a2

c2

� �2
� a2

c2 Δ sin2θ

c2ρ2Δ
0 0 � 2mra

cρ2Δ

0
Δ
ρ2

0 0

0 0
1

ρ2
0

� 2mra

cρ2Δ
0 0 �

a2

c2 sin
2θ � Δ

ρ2Δ sin2θ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: (7:195)
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We claim that the null hypersurface is Δ= 0, whose solution is (see (7.187))

r ¼ r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

c2

r
; (7:196)

equivalently

rþ2 þ a2

c2
¼ 2mrþ; (7:197)

where we have singled out the solution r= r+, which is the one of greatest interest (the
solution r= r− being further inside the source). Consider, then, the hypersurface

f ¼ r � rþ ¼ r � m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

c2

r
:

The normal is nμ = f,μ= (0, 1, 0, 0), so

n μ nμ ¼ g μν nμ nν ¼ g11 ¼ Δ
ρ2

:

But Δ = 0 at r = r+, hence

nμ nμ ¼ 0 on r ¼ rþ ;

justifying our claim that r= r+ is a null hypersurface. Light will propagate within this
surface, without leaving it – it will not escape from the Kerr black hole. We have therefore
shown that the event horizon of the Kerr black hole is:

Kerr event horizon : r ¼ rþ ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

c2

r
: (7:198)

(As expected, when a= 0, this reduces to the Schwarzschild case r= 2m.)
We now turn to the other property of the surface r = 2m in the Schwarzschild case, that it is

a surface of infinite red-shift (SIR). The red-shift factor is

z ¼ vem
vrec

� 1;

the symbols referring to the frequencies of emitted and received light. If light is emitted at r2
and received at r1 we have, from (5.46),

z ¼ v2

v1
� 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðr1Þ
g00ðr2Þ

s
� 1;

with g00(r) = 1 −
2m

r
. So for light emitted at r and received at infinity, g00(r1) = 1 and

z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrÞ

p � 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

r � 2m

r
� 1;

and as r → 2m, z → ∞. The surface r= 2m is therefore an SIR, defined by g00 = 0.
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In the case of the Kerr solution the condition g00 = 0 gives, from (7.191), with (7.183),

ρ2 ¼ 2mr ) r2 � 2mr þ a2

c2
cos2θ ¼ 0

with the solutions

r1;2 ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

c2
cos2θ

r
;

the interesting case of which is r= r1: so

Kerr SIR : r ¼ r1 ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

c2
cos2θ

r
(7:199)

(which again, in the case a= 0, reduces to the Schwarzschild case).
The surfaces EH and SIR are sketched in Fig. 7.12, in ‘plan’ and ‘elevation’ views. The

ergosphere is the region between them, and therefore defined by

mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

c2

r
¼ rþ5r5r1 ¼ mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

c2
cos2θ

r
: (7:200)

Now consider a particle in the ergosphere. What constraints are there on its movement? A
‘real’ particle must move along a timelike geodesic; we shall first show that this is
impossible if the particle is at rest in the ergosphere. For, from (7.188), if r = const, θ =
const and � = const, then

ds2 ¼ � 1� 2mr

ρ2

� �
c2 dt2: (7:201)

On the surface of infinite red-shift ρ2 = 2mr and r = r1, so in the ergosphere, where r< r1,
(7.199) gives

r = r1: SIR: g00 = 0

Ergosphere

‘Plan’

‘Elevation’

r = r+: EH: Δ = 0

Fig. 7.12 The ergosphere in plan and in elevation.
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r � m5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

c2
cos2θ

r

which is equivalent to

r2 þ a2

c2
cos2θ52mr;

or, from (7.183), ρ2 < 2mr, so (7.201) gives ds2 > 0 inside SIR. However, as just noted, for a
real particle we must have ds2 < 0, so our assumption that r, θ and � all be constant cannot be
met; other terms in the line element must contribute and the particle must change position.

Consider then a particle with fixed r, θ but moving in the direction of increasing �. Then
the 4-velocity is

dx μ

dτ
¼ u μ ¼ ðut; ur; uθ; u�Þ ¼ ðu0; 0; 0; u3Þ ¼ u0 1; 0; 0;

u3

u0

� �
¼ u0 1; 0; 0;

Ω
c

� �
;

since

Ω ¼ d�
dt

¼ d�=dτ
dt=dτ

¼ c
u3

u0
: (7:202)

The condition that u μ is timelike is

gμν u
μ uν50;

i.e.

g00ðu0Þ2 þ 2g03 u
0u3 þ g33ðu3Þ250;

or, with (7.202),

Ω2

c2
þ 2

g03
g33

Ω
c
þ g00
g33

50: (7:203)

The solution to
Ω2

c2
þ 2

g03
g33

Ω
c
þ g00
g33

¼ 0 is

Ω
c
¼ � g03

g33
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g03
g33

� �2
� g00
g33

s
: (7:204)

The metric components g00, g03 and g33 may be read off from (7.191). Putting (noting that
g03 < 0)

� g03
g33

¼ ω
c
; (7:205)

the two solutions (7.204) may be written

Ωmin ¼ ω�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � c2

g00
g33

r
; Ωmax ¼ ωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � c2

g00
g33

r
: (7:206)

We conclude that for (7.203) to hold Ω must lie in the range
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Ωmin5Ω5Ωmax: (7:207)

Ω is the angular velocity of a particle in Kerr space-time, as seen by a distant observer. It
depends on r, since the metric coefficients depend on r. In general, since g00 < 0, Ωmin < 0,
and a distant observer would be able to see a particle counter-rotating. As r approaches the
surface of infinite red-shift, however, g00 → 0, so Ωmin = 0 (and Ωmax = 2ω), and a particle
would not have the option of counter-rotating, but could still remain at rest. For this reason
the surface of infinite red-shift is also called the static limit. It is the nearest a particle can get
to the centre of the black hole and still not rotate (that is, not be seen as rotating by a distant
observer). Inside it, and therefore in the ergosphere,Ω> 0; a particle is forced to rotate, in the
direction of the angular momentum of the source.

To explore more fully the nature of angular momentum and angular velocity in the Kerr
solution, let us consider the part played by conservation laws and Killing vectors. In
Section 6.8 we saw that the fact that the metric in 3-dimensional flat space

gij ¼
1 0 0
0 r2 0
0 0 r2 sin2θ

0
@

1
A

is independent of �,
∂gij
∂�

= 0, leads to the conservation of angular momentum ξ · u, where

ξ=
∂
∂�

and u is the velocity of a particle moving along a geodesic. In the case of the Kerr

metric, gμν in (7.191) above is also independent of �, so there is a Killing vector ξ =
∂
∂�

, i.e.

ξ μ= (0, 0, 0, 1) . There is also a Killing vector
∂
∂t
=η, corresponding to the fact that it is a

stationary metric, with coefficients independent of t. Now consider a particle moving in a
planar orbit with θ = π /2:

u μ ¼ ðc _t; 0; 0; _�Þ: (7:208)

The conserved angular momentum is

L ¼ x : p ¼ m x : u ¼ mðgμ ν �μ uνÞ ¼ mg3v u
ν ¼ m ðg30 c _t þ g33 _�Þ

(7:209)

and a particle with zero angular momentum has

g33 _�þ g30 c _t ¼ 0

or, from (7.191),

r2 þ a2

c2
þ 2mra2 sin2θ

c2ρ2

� �
_� � 2mar sin2θ

cρ2

� �
c _t ¼ 0:

Since sin θ= 1 here, this gives

d�
dt

¼
_�
_t
¼ 2mra

r2 þ a2
c2

	 

ρ2 þ 2mr a2

c2
¼ �c

g03
g33

¼ ω; (7:210)
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from (7.204) and (7.191), and we see that particles with zero angular angular momentum
possess non-zero angular velocity. This is an example of the phenomenon that the space-
time frames are being ‘dragged’ round by the source – the Lense–Thirring effect.

We have seen that, as observed by a distant observer, a particle in a circular orbit in aKerr field
may, so long as it is outside the surface of infinite red-shift, counter-rotate, since when r< r1,
Ωmin < 0. On the SIR, however,Ωmin = 0, and inside it, in the ergosphere, bothΩmin andΩmax are
positive, so the particle (even one with no angular momentum) is seen to rotate in the same
direction as the black hole – the phenomenon of inertial drag. What happens as r decreases
further and the particle’s orbit approaches the event horizon? It turns out that in this case Ωmin

andΩmax tend to the same value, so any particle on the event horizon rotates with a fixed angular
velocity –which may, conveniently, be taken as a definition of the angular velocity of the black
hole. To see this, recall that the EH is a null hypersurface, that is, the normal vector n μ is null,
n μnμ=0. A particle on a geodesic in the hypersurface follows a tangent vector orthogonal to n μ.
Any vector orthogonal to a null (lightlike) vector is either null or spacelike and the spacelike
option cannot apply here, so the tangent vector k obeys k2(r+) =k · k(r+) = 0: recall that r= r+ on
the EH – see (7.196). The vector k has components only in the t, θ and � directions so let us put

k μ ¼ ð1; 0; α; βÞ; (7:211)

or, equivalently

u μ ¼ u0ð1; 0; α; βÞ ¼ u0k μ: (7:212)

Then

k2 ¼ gμν k
μ kν ¼ g00 þ α2 g22 þ β2g33 þ 2αβ g03

� α2 g22 þ ðg03 þ β g33Þ2
g33

þ g00 g33 � g032

g33
:

On the event horizon, however, whereΔ=0, we also have g00 g33− g03
2 = 0 (see Problem 7.4),

so the last term vanishes, and k 2 = 0 requires that α=0 and

β ¼ � g03ðrþÞ
g33ðrþÞ

¼
2mrþa sin2 θ

cρ2þ

r2þ þ a2

c2
þ 2mr þ a2 sin2 θ

c2ρ2þ

� �
sin2 θ

¼ 2mrþa

cρþ 2ð2mrþÞ þ 2mrþ a2
c sin2θ

¼ a=c

ρ2þ þ a2

c2
sin2 θ

¼ a=c

2mrþ
;
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where we have made use of Equations (7.183) and (7.197). We therefore have, from (7.212),

uμ ¼ u0 1; 0; 0;
a=c

2mrþ

� �
; (7:213)

and hence an angular velocityΩH which may be taken as a definition of the angular velocity
of a Kerr black hole:

ΩH ¼ a

2mrþ
: (7:214)

(It might be useful to remind ourselves that the units are correct: a/c has the dimension of
length, as have m and r, so ΩH has the dimension of inverse time.)

Our next task is to find an expression for the area of the event horizon. On EH r = r+ so
dr= 0, and since Δ= 0 on EH we have, from (7.189)

ds2 ¼ ρ2þ dθ2 þ sin2θ
ρþ 2

r2þ þ a2

c2

� �
d�� a dt

� �2
:

From Equation (7.197), however, r+
2 +

a2

c2
= 2mr+, the above equation becomes

ds2 ¼ ρ2þ dθ2 þ 2mrþ
ρþ

� �2

ðsin2θÞ d�� a

2mrþ
dt

� �2
: (7:215)

This is the separation between two points on the surface at differing values of θ, � and t. For
a static configuration, however, the term in dt disappears and the area 2-form of the event
horizon is

dA ¼ ρþ dθ ^ 2mrþ
ρþ

� �
sin θ d� ¼ 2mrþ sin θ dθ ^ d�;

giving an area of

A ¼ 2mrþ
ð
sin θ dθ ^ d� ¼ 8πmrþ ¼ 8π m2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4 � m2a2

c2

r !
: (7:216)

With m ¼ MG

c2
, a ¼ J

Mc
this gives

A ¼ 8πG2

c4
M 2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � J 2

G2

r !
; (7:217)

or, in geometrical units G= c= 1,

A ¼ 8π M 2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 4 � J 2

p� �
: (7:218)

This is the area of the event horizon of a Kerr black hole.
We come now to the highly interesting result, first pointed out by Penrose,19 that it is possible

to extract energy from aKerr black hole. This is initially surprising, since after all a black hole is

19 Penrose (1969).

278 Gravitational collapse and black holes



a region from which no light can escape. The result follows, however, from the fact that the
event horizon and the surface of infinite red-shift are distinct; the energy is extracted from the
ergosphere. In parallel with the observation that the (conserved) angular momentum of a body
is ξ · p (see (7.208)), we also note that its conserved energy is E=− η · p. For a particle outside
the static limit (SIR) η is timelike, so in the frame in which η μ= (1, 0, 0, 0),

E ¼ mh: u :

This is conserved, so for a particle coming in from infinity, entering the ergosphere and
leaving it again, the energy is E > 0. But now consider a particle originating in the ergo-
sphere. Here η is spacelike: this follows immediately by noting that (see (7.191))

ημημ ¼ gμνη
μην ¼ g00 ¼ �

r2 þ a2

c2
cos2θ � 2mr

ρ2

0
BB@

1
CCA: (7:219)

Outside the SIR r> r1 so η μημ< 0 and η is timelike. On SIR η becomes null and inside it
becomes spacelike, η μημ > 0. In the ergosphere, then, there is a local frame in which η μ= (0,
1, 0, 0) and the ‘energy’ is mη · u=m _x in Cartesian coordinates; it becomes in effect a
momentum, which may be either positive or negative. To be clear, we are here not talking
about a particle which can leave the ergosphere through the SIR and reach infinity, since
such a particle must always have E > 0. To say of a particle that it has E < 0 means that this
would be the energy measured at infinity if the particle could be brought there.

But now consider a particle entering the ergosphere from infinity (with E> 0, of course)
and then breaking up into two particles in the ergosphere; and suppose that one of these
particles escapes back through the SIR, but the other one does not escape. This is sketched in
Fig. 7.13, in which particle 1 enters the ergosphere, splitting up into particles 2 and 3.
Particle 3 then leaves the ergosphere, escaping to infinity while particle 2, while also
originating in the ergosphere, does not escape to infinity; it enters the black hole through
the event horizon. It may then have negative energy, E2 < 0. On the other hand E1 and E3 are

1

3

2

Fig. 7.13 The Penrose process: particle 3 may leave the black hole (ergosphere) with more energy than

particle 1 had on entering.
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both positive. Energy conservation at the point of disintegration, however, implies that
E1 =E2 + E3 and hence

E3 ¼ E1 � E24E1:

the particle leaving the ergosphere may have a greater energy than the particle which
entered: energy has been extracted from the black hole. This is commonly known as the
Penrose process. As a result of it, the mass of the black hole must decrease. Note the
surprising nature of this result!

This, however, is not all; the black hole also loses angular momentum through the
Penrose process. The 4-velocity u μ of a particle in the ergosphere is timelike, and from
(7.210) may be written u=η + ΩHξ; hence the Killing vector

z ¼ hþ ΩHx (7:220)

is timelike, from which it follows that −p · ζ > 0, i.e.

�p :h� ΩHp : x ¼ E � ΩHL40;

where (7.209) has been used; hence

E4ΩHL: (7:221)

Now in the Penrose process a black hole absorbs an amount of energy E2 < 0, so it also
absorbs the angular momentum

L25
E2

ΩH
50 :

the angular momentum of the black hole also decreases. Eventually the angular momentum
will become zero, at which point the surface of infinite red-shift and the event horizon will
coincide and the ergosphere will disappear (will shrink to zero), and further extraction of
energy (mass) from the black hole will become impossible.

Note that in the process in which a black hole absorbs (a particle of) energy E and angular
momentum L its parameters change by δM =E/c2 and δJ = L, so by virtue of (7.221),

δM � ΩH

c
δJ40: (7:222)

This inequality is actually a consequence of the first and second laws of black hole
mechanics, as we see below.

7.10 Surface gravity

Surface gravity turns out to play an important role in the thermodynamics of black holes. It is

not a difficult concept; the surface gravity on the Earth is
GM

R2
, and this expression, suitable
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for the non-relativistic and weak field approximations, simply has to be generalised. So first
consider a static, spherically symmetric space-time

ds2 ¼ �f ðrÞ c2 dt2 þ f ðrÞ�1 dr2 þ r2 dΩ2; (7:223)

for example, in the Schwarzschild case, f (r) = 1 −
2m

r
. Hold a particle with mass m0

stationary at a distance r from the centre, with coordinates and 4-velocity

x μ ¼ ðct; r; θ; �Þ; u μ ¼ ðc_t; 0; 0; 0Þ

and ds2 =− f(r) c2 dt2 =− c2 dτ2, so _t ¼ dt
dτ

= f−½ and

u0 ¼ c f �1=2; ui ¼ 0: (7:224)

In Minkowski space acceleration is defined as (see Section 2.2) aμ ¼ _uμ. We generalise this
to a=

D

uu, which from Equation (4.1a) may be written

a ¼ D

u u ¼ u�; λ u
λ e�:

Then

aμ ¼ 5a; qμ4 ¼ uμ;λu
λ ¼ uμ;0 u

0 ¼ c f �1=2 uμ;0:

In turn, uμ;0 = u
μ
,0 + Γ μ

ν0 u
ν=Γ μ

00. It is easily established that the only non-zero component

of the connection coefficient is Γ100 =½ f f 0 f 0 ¼ df
dr

� �
, so the only non-zero component of

acceleration is

a1 ¼ c f �1=2 u1;0 ¼ c2

2
f 0:

The magnitude of the acceleration vector is

a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν aμ aν

p ¼ ffiffiffiffiffiffi
g11

p
a1 ¼ c2

2
f �

1=2 f 0:

In the Schwarzschild case f = 1 −
2m

r
and

aðrÞ ¼ mc2

r2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q :

This is the force (when multiplied by m0) required to hold the particle at its local position,

and it diverges as r → 2m. (Note in passing that when r ≫ 2m, a becomes GM=r2, as
expected.) But consider instead that the particle is held in position by observer at infinity,
holding the particle on a long massless string. If the observer moves the string by a small
proper distance δs, he does an amount of work m0 a(∞) δs = δW∞. At the position of the
particle, however, the work done ism0 a(r) δs= δW(r). These amounts of work are different,
but one may imagine a machine converting work into radiation; the work at position r is
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converted into radiation which is then beamed to the observer at infinity – and in the process
red-shifted by the factor √g00 = f

½, so that

δE1 ¼ f 1=2m0a δs:

But δE∞= δW∞, by energy conservation, so

a1ðrÞ ¼ f 1=2 aðrÞ ¼ c2

2
f 0ðrÞ:

The quantity m0 a∞(r) is the force applied by the observer at infinity to keep the particle in
place. It is well behaved as r → 2m in the Schwarzschild case and is called the surface
gravity κ of the black hole:

� ¼ a1ðrEHÞ ¼ c2

2
f 0ðrEHÞ (7:225)

where rEH refers to the event horizon.20 In the Schwarzschild case f 0 ¼ 2m

r2
and rEH = 2m so

� ¼ c2

4m
¼ c4

4MG
ðSchwarschildÞ: (7:226)

(Note that the dimensions are those of acceleration, as expected.)
We now show that surface gravity may also be defined in terms of Killing vectors – in the

static case we are considering at present, of the vector η=
1

c

∂
∂t
. For the moment we confine

ourselves to the Schwarzschild black hole, so (cf. (7.219))

η μ ημ ¼ � 1� 2m

r

� �
; (7:227)

which is null on the event horizon. We then define the scalar quantity

Φ ¼ �η μ ημ; Φ ¼ 1� 2m

r
: (7:228)

ClearlyΦ = 0 on the event horizon. The normal to this surface is Φ,μ; but since the surface is
null its normal is proportional to ημ itself, so there will exist a quantity κ such that

c2Φ;μ ¼ 2�ημ: (7:229)

Let us work in advanced time coordinates

ðcv; r; θ; �Þ ¼ ðx0; x1; x2; x3Þ; (7:230)

so from (7.130) the line element is

ds2 ¼ � 1� 2m

r

� �
c2 dv2 þ 2c dv dr þ r2 dΩ2;

or

20 This argument is taken from Poisson (2004), p. 185.
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gμν ¼
� 1� 2m

r

� �
1 0 0

1 0 0 0
0 0 r2 0
0 0 0 r2 sin2θ

0
BBBB@

1
CCCCA; (7:231)

with corresponding contravariant components

gμν ¼

0 1 0 0

1 1� 2m

r
0 0

0 0
1

r2
0

0 0 0
1

r2 sin2 θ

0
BBBBBB@

1
CCCCCCA
: (7:232)

Themetric has a Killing vector η =
1

c

∂
∂v
, i.e. η μ= (1, 0, 0, 0) in the coordinate system (7.230),

hence

η0 ¼ g0μ η
μ ¼ g00 ¼ � 1� 2m

r

� �
; η1 ¼ g1μη

μ ¼ g10 ¼ 1

and

Φ ¼ �η0 η0 � η1 η1 ¼ 1� 2m

r
; Φ;1 ¼ 2m

r2

and (7.229) then gives, at r= 2m,

� ¼ c2

4m
;

as in (7.226) above.
We now turn to the consideration of surface gravity in Kerr black holes. We want to work

in a coordinate system which is a generalisation of the advanced time coordinate system
(7.230). This is given by the line element (7.185), which may be written

gμν ¼

� 1� 2mr

ρ2

� �
1 0 � 2mra

cρ2
sin2θ

1 0 0 � a

c
sin2θ

0 0 ρ2 0

� 2mra

cρ2
sin2θ � a

c
sin2θ 0

sin2θ
ρ2

r2 þ a2

c2

� �2

� a2

c2
Δ sin2θ

" #

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (7:233)

The Killing vector (7.220) is ζ μ= (1, 0, 0, ΩH
c ), then

ζ 0 ¼ g00 þ g03; ζ 3 ¼ g30 þ g33; ζ 1 ¼ g10 þΩH

c
g13;
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and the field Φ is, in this case,

Φ ¼ �ζ μζ μ ¼ �ζ 0ζ 0 � ζ 3ζ 3 ¼ �ðg00 þ 2g03 þ g33Þ: (7:234)

To find the surface gravity κ we must (see (7.229)) calculate Φ,r and compare with ζr= ζ1 .
We have, from above

ζ 1 ¼ 1� a

c2
ΩH sin2θ: (7:235)

Now ζ · ζ is, from (7.220),

z : z ¼ h :hþ 2ΩH h : x þ Ω2
H x : x

¼ g00 þ 2ΩH g03 þΩH
2 g33

¼ g00 � g03 2

g33
þ g33 ΩH

2 þ 2ΩH
g03
g33

þ g032

g233

� �

¼ 1

g33
ð�Δ sin2θÞ þ g33ðΩH � ωÞ2;

where the result of Problem 7.4 and (7.205) have been used. Now define

S ¼ r2 þ a2

c2

� �2

� a2

c2
Δ sin2θ; (7:236)

so that, from (7.233),

g33 ¼ S
ρ2

sin2θ;

and

z : z ¼ � sin2θ
ρ2

ðΩH � ωÞ2 � ρ2Δ
S

: (7:237)

We must now differentiate this with respect to r, regarding ω as a parameter (not a function
of r), so

ðz : zÞ;1 ¼
S sin2θ

ρ2

� �
;1

ΩH � ω2
	 
� ρ2

S

� �
;1

Δ� ρ2

S
Δ;1: (7:238)

On the event horizon ω = ΩH and Δ= 0, so

ðz : zÞ;1 ¼
ρ2

S
Δ;1

� �
r¼rþ

¼ 2ρ2ðr � mÞ
S

� �
r¼rþ

;

hence the formula (7.229) gives

2� ¼ c2
2ρ2ðr � mÞ

S

� �
r¼rþ

:
1

1� a

c2
ΩH sin2θ

;
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which, after a bit of algebra, yields

� ¼
c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

c2

r

r2þ þ a2

c2

: (7:239)

In the case a = 0, r+ → 2m, κ →
c2

4m
, as in (7.226) above, and as expected.

Let us now collect together the formulae for the angular momentum, (7.214), surface
gravity (7.239) and area (7.216) of a Kerr black hole:

ΩH ¼ a

2mrþ ; (7:214)

� ¼
c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

c2

r

r2þ þ a2

c2

; (7:239)

A ¼ 8π m2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4 � m2a2

c2

r !
; (7:216)

where, from (7.196), r+ = m +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

c2

r
. Putting a ¼ J

Mc
and using geometric units G =

c = 1 these become

ΩH ¼ J

2M M 2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 4 � J 2

p� � ; (7:240)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 4 � J 2

p

2M M 2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 4 � J 2

p� � ; (7:241)

A ¼ 8π M 2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 4 � J 2

ph i
: (7:242)

In the Schwarzschild case κ =
1

4M
, A = 16πM2 and

�A

4π
= M. As J increases from zero, κ

decreases until, when J = M 2, it becomes zero – like centrifugal force. Then the mass is

given by ΩH¼ J

2M3
, or

M ¼ 2ΩH J : (7:243)

In the general case the formulae above give
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�A

4π
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 4 � J 2

p

M
; 2ΩH J ¼ J 2

M M 2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 4 � J 2

p� � ;
and then

2ΩHJ þ �A

4π
¼ M ; (7:244)

which is Smarr’s formula for the mass of a black hole.21

It is clear that the area of a black hole is a function of its mass and angular momentum, A =
A(M, J). Now suppose that these quantities change, for example by the absorption of a
particle, as considered in the Penrose process:M→M + δM, J→ J + δJ. We can then find a
relation between δA, δM and δJ. Working in geometric units, so that m =M and so on, from
(7.216) we have

δA
8π

¼ M δrþ þ rþ δM ;

then, using (7.239) and (7.197) (with c = 1),

�

8π
δA ¼ rþ �M

2Mrþ
ðM δrþþ rþ δM Þ:

In addition, from a ¼ J

M
we have δJ = a δM + M δa so that

ΩH δJ ¼ a

2mrþ
ð a δM þM δa Þ;

and it then follows from simple algebra that

�

8π
δAþΩH δJ ¼ δM : (7:245)

This is the relation we were anticipating. The Penrose process is an example of a process in
whichM and J change. By virtue of the relation (7.222), found there, and the above relation
we see that δA in this process – the area of the black hole – increases. This is actually an
example of a more general result proved by Hawking in 1971 that in any process the surface
area of a black hole can never decrease:22

δA � 0: (7:246)

There is one further concept which it is useful to introduce, that of irreducible mass. Let
us define23

Mir
2 ¼ 1

2
M 2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 4 � J 2

p� �
; (7:247)

so that, from (7.242),

21 Smarr (1973).
22 Hawking (1971).
23 Christodoulou (1970).
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A ¼ 16πMir
2: (7:248)

From simple algebra it then follows that

M 2 ¼ Mir
2 þ J 2

4Mir
2
: (7:249)

The second term above represents the rotational contribution to the mass of a black hole.
The maximum amount of energy to be extracted from a black hole by slowing its rotation

down isM−Mir . The irreducible massMir =

ffiffiffiffiffiffiffiffi
A

16π

r
is the energy which cannot be extracted

by the Penrose process – and by virtue of Hawking’s result (7.246) the irreducible mass of a
black hole will never decrease.

7.11 Thermodynamics of black holes
and further observations

Results like (7.246) and (7.245), that the area of a black hole never decreases, and the relation
between the changes in mass, area and angular momentum of a black hole, are reminiscent of
the laws of thermodynamics and lead to the formulation of analogous laws of black hole
dynamics.24 The energy E, temperature T and entropy S of a gas are respectively analogous to
the massM, surface gravity κ and area A of a black hole, and the laws are as follows:

Zeroth law The surface gravity of a stationary black hole is constant over the horizon.
First law is given by (7.245)

dM ¼ �

8π
dAþ ΩH dJ ;

and corresponds to the first law of thermodynamics

dE ¼ T dS � P dV ;

which expresses conservation of energy.
Second law is δA ≥ 0, as in (7.246) above. This law is actually slightly stronger than the

thermodynamic analogy δS ≥ 0. In thermodynamics entropy may be trans-
ferred from one system to another, and it is only required that the total entropy
does not decrease. Since individual black holes cannot bifurcate,25 however,
area cannot be transferred from one to the other. The second law of black hole
mechanics states that the area of each black hole separately cannot decrease.

Third law The Planck–Nernst form of the third law of thermodynamics states that S→ 0
as T → 0. Israel has proposed an analogous law of black hole dynamics.26

24 Bardeen et al. (1973).
25 Hawking & Ellis (1973), pp. 315–316.
26 Israel (1986).
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At this stage we would consider the laws of black hole dynamics and thermodynamics to
be merely analogous, but Bekenstein27 pointed out that in this case there is a problem with
the second law of thermodynamics in the presence of black holes. A system whose overall
entropy is increasing, as it always will, may nevertheless be made up of individual parts, in
some of which S is decreasing and in others of which S is increasing (and S still increases
overall). In the presence of a black hole one could then throw the parts of the system in which
S is increasing into the black hole. We must now, however, consider a fundamentally
important feature of black holes, considered as solutions (Schwarzschild or Kerr) to the
field equations. This is that these solutions are exact and are described completely by their
mass m and angular momentum a. They are respectively one and two parameter solutions.
This implies that, for example, two Schwarzschild black holes with the same mass must be
identical; and similarly two Kerr black holes with the same mass and angular momentum
must be identical. This result is the content of the theorem that a black hole ‘has no hair’ –
the only labels it possesses are mass and angular momentum (and electric charge in the case
of Kerr–Newman black holes). Anything else is ‘hair’. A striking implication of this
theorem, in the context of elementary particle physics, for example, concerns baryon
number. As far as is known baryon number B is a conserved quantity. No reactions have
yet been observed in which B is violated, though it should be noted that the SU(5) Grand
Unified Theory predicts proton decay p → e+ + π0, which would indeed violate this
conservation law. Since black holes, however, defined as (Schwarzschild or Kerr) solutions
to Einstein’s field equations, do not possess a baryon number, then the process of throwing a
collection of baryons into a black hole will, in effect, be one in which B is violated.

Returning to our example concerning the second law of thermodynamics, the implication
of throwing the part of the system in which S is increasing into the black hole is, since the
black hole itself has no ‘hair’, that the overall entropy has decreased, thus violating the
second law of thermodynamics! This drastic and unthinkable conclusion may be avoided,
however, if we suppose that the black hole does actually possess entropy, proportional to its
area, so that as its area increases, so does its entropy. That is to say that the entropy of a black
hole is not hair; it is simply a function of its mass and angular momentum. In that case the
second law of thermodynamics will be saved. On the other hand, to say this is to say that
what we supposed above was an analogy is actually more than that: a black hole does
actually possess entropy, proportional to its area A. But in that case it must also possess a
temperature T, proportional to its surface gravity κ (by comparing (7.245) and (7.250)). And
in that case it must shine – it must emit radiation. But this conclusion goes against the whole
understanding of black holes so far developed: in classical General Relativity black holes do
not shine, since light cannot escape through the event horizon. How is it possible that black
holes might shine?

A clue is to be found in looking for formulae relating the entropy and area, and temper-
ature and surface gravity of black holes. Entropy has the dimensions of Bolzmann’s
constant, energy=temperature, so if we suppose that S and A are proportional, the propor-
tionality constant must involve k. Apart from that it must presumably involve only funda-
mental constants. It is easy to see, however, that using G and c alone it is not possible to

27 Bekenstein (1980).
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obtain a quantity with the dimensions of area. We need another constant, and the only one
available is Planck’s.Wemay then write the following formulae – known as the Bekenstein–
Hawking formulae – for the entropy and temperature of a black hole:

S ¼ kc3

4G�h
A; T ¼ �h

2πck
�: (7:252)

In the case of a Schwarzschild black hole, putting a= 0 in (7.239) gives for the second
formula

T ¼ �hc3

8 πGkM
ðSchwarzschildÞ; (7:253)

showing that the temperature of a black hole is inversely proportional to its mass – the lighter
it is, the hotter it is. The key observation about these formulae is, of course, that they involve
Planck’s constant, which indicates that the mechanism by which black holes shine is a
quantum mechanism. This mechanism was first derived by Hawking and relies, at bottom,
on an observation in quantum field theory in curved spaces.28 In flat (Minkowski) space we
may express, for example, a massless Hermitian scalar field � as

� ¼
X
i

½fiai þ fi
�aiy�; (7:254)

where the {fi} are a complete orthonormal family of complex valued solutions to the wave
equation fi;μν ημν= 0, which contain only positive frequencies with respect to the usual
Minkowski time coordinate. The operators ai and ai

† are interpreted as the annihilation and
creation operators, respectively, for the particles in the ith state. The vacuum |0i is defined as
the state from which one cannot annihilate particles

aij0i ¼ 0:

In a curved space-time, however, one cannot unambiguously decompose � into its positive
and negative frequency components, since these terms cease to have an invariant meaning in
a curved space-time. Hawking shows that in effect this means that particles may be created
in the vacuum. To arrive at a simplified pictorial representation of this consider the Feynman
‘bubble’ diagram shown in Fig. 7.14. Diagrams like this characterise the vacuum in quantum
field theory (QFT). They correspond to the production, at each point of space-time, of a
particle–antiparticle pair, which shortly afterwards again annihilate each other. This process
is allowed by QFT, and physics being what it is, what is allowed by its laws is actually
compulsory, so the vacuum is full of these processes of creation and annihilation of particle–
antiparticle pairs. Processes of this type break the degeneracy of the 2S1/2 and 2P1/2 energy
levels in hydrogen, and explain the Lamb shift in atomic physics. Now consider such a
process taking place just outside the event horizon of a black hole. A particle–antiparticle
pair is created, for example e+e−. In flat space these particles will stay within each other’s
wavefunction and after a short time, governed by the uncertainty principle, will annihilate.
Just outside an event horizon, however, not only is the gravitational field very strong, but so

28 Hawking (1975).
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is its gradient, so one of the particles e+ and e−, which are created at slightly different spatial
points, may find itself in a considerably stronger gravitational field than the other particle, so
the two particles quickly become separated and at a later time, when in flat space they would
have come together to annihilate each other, they are actually ‘outside each other’s wave
function’, so this is impossible. One of the particles may cross the event horizon into the
black hole and acquire negative energy, as happens in the Penrose process, and the other
particle, with equal and opposite (i.e. positive) energy, will escape from the hole altogether:
it will be emitted. Hawking showed that this indeed happens, and that the spectrum of
emitted particles is thermal, beautifully consistent with the notion that the black hole has a
temperature. The conclusion, then, is that while in classical General Relativity black holes
emit no radiation, by virtue of quantum theory they actually do emit radiation: they posses a
temperature and shine, in the process losing mass (carried by the emitted particles), and from
Equations (7.252) and (7.253), becoming hotter, and therefore emitting more thermal
radiation. The emission process accelerates and the black hole eventually ends its life in
an explosion. Black holes are therefore not completely stable entities, though their lifetimes
are extremely long.

This connection between gravity, thermodynamics and quantum theory must be seen as
indicative of something very deep in nature. Black holes are thermal objects (they have a
temperature), but to understand why they are thermal or how they are thermal is impossible
without a quantum theory of gravity, which at present we do not possess. Nevertheless it
might be interesting to mention a couple of areas of research at present being pursued. The
first is concerned with entropy. If black holes possess an entropy, what is the statistical
origin of it? Entropy, after all, is related via Boltzmann’s constant to degrees of freedom.
Classically, however, black holes possess very few degrees of freedom; a Kerr black hole
possesses two! So where does the entropy come from? This is seen as a question about
information theory, and as one which inevitably involves quantum theory. The entropy of a
black hole is proportional to its area, so its area must be the key to the information contained,
counted in q-bits. The so-called ‘holographic principle’ is an area of current research
addressed to this question.

Another interesting topic is in some sense orthogonal to this: the simplicity and structure-
less quality of black holes has lead ’t Hooft to speculate on the role played by black holes in
elementary particle physics. After all, if black holes evaporate there will be a point at which

Time

Fig. 7.14 A Feynman bubble diagram: creation and annihilation of a particle–antiparticle pair from the

vacuum.

290 Gravitational collapse and black holes



they are extremely small (just before they disappear): a mini black hole might be the smallest
thing there is, so if we really want to understand the world of the very small – perhaps even
to go beyond the StandardModel of elementary particle physics –might it not be a good idea
to take this thought seriously?

7.12 Global matters: singularities, trapped surfaces
and Cosmic Censorship

Our investigation of black holes above has been based entirely on two exact solutions of the
Einstein field equations. These solutions possess a high degree of symmetry: spherical
symmetry in the Schwarzschild solution, cylindrical in the case of Kerr. But real stars cannot
be expected to exhibit any exact symmetry, though they may possess an approximate one.
What, then, can we say about the collapse of real stars? Will they produce black holes? Of
Schwarzschild or Kerr type? (Are there any other types?) These are obviously important
questions and it is helpful to make them a bit more specific. In the case of an exactly
spherically symmetric collapsing star, all the infalling matter will come together at r= 0,
producing a ‘singularity’, and this singularity is, as we saw, surrounded by a surface r = 2m,
an ‘event horizon’. So we may ask: (1) what exactly is a singularity? (2) in the case of a star
with only approximate spherical symmetry, is this singularity still produced? (or, equiv-
alently, is the Schwarzschild solution stable under perturbations?) (3) in this same case, is an
event horizon produced, which ‘shields’ the singularity? Similar questions may be asked
about the Kerr solution, and we may go on to ask, are there any general results, independent
of particular solutions of the field equations, relating to gravitational collapse?

There are general results, though unfortunately not everything that one might reasonably
assume to be true has actually been proved to be true. First a word about singularities. The
metric on the 2-sphere

gik ¼ a2 0
0 a2 sin2θ

� �
; gik ¼

1

a2
0

0
1

a2 sin2θ

0
B@

1
CA;

is singular at θ = 0, π, where sin2θ=0. But this is simply a singularity in the coordinate system:
the surface S2 itself is completely smooth at the north and south poles, where θ=0, π. Similarly

the metric ds2 =
1

x
dx2 + dy2 has a coordinate singularity at x= 0, but this is removable by

putting x= u2, y= v, then ds2 = 4du2 + dv2. In Riemannian spaces a singularity can often be
detected by considering invariants that can be formed from the curvature scalar. There are

1

12
nðn� 1Þðn� 2Þðnþ 3Þ

of these (independent) invariants in general, so 14 of them in the case of space-time. If any
one of them becomes infinite – a condition independent of any coordinate system – then we
can be said to have a true singularity. In Schwarzschild space-time,
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R� λ μ ν R
� λ μ ν / 1

r6
;

suggesting that r= 0 is a true singularity but r= 2m is not. A precise definition of a
singularity, however, is not so easy. Geroch (1960) outlines some of the difficulties, and
Schmidt (1971) proposes a technical definition which in looser language amounts to geo-
desic incompleteness: that is, a geodesic cannot be continued to arbitarily large values of its
parameter, but comes to an ‘end’, either in the future or in the past. The termination point is
then a singularity.We then will expect that black holes contain a singularity at r= 0, since the
incoming matter and light ‘cease to exist’ in some sense at r= 0. Perhaps we should say
that classical General Relativity – which of course is the theory we are dealing with –

exhibits this singularity in the (exact) Schwarzschild and Kerr solutions, though the expect-
ation of physicists is surely that ultimately General Relativity will be replaced by a more
refined theory, in which quantum effects are taken into account, so that what happens at r= 0
loses its catastrophic and singular nature. But this is a question for the future! The question
we are now asking is, does this singularity exist in more general situations (without any
particular symmetry)? Penrose (1965) and Hawking and Penrose (1969) have shown that
under rather weak conditions, not including any condition of symmetry, a space-time M is
not timelike and null geodesically complete, i.e. there is a singularity present. These
conditions are:

(i) Rμν u
μuν ≥ 0, where Rμν is the Ricci tensor and uμ is a tangent to the geodesic, or

4-velocity. By virtue of the field equations this condition may be written

ðTμ ν � 1=2 gμ νTÞ uμ uν � 0;

which is a reasonable condition on the energy;
(ii) every timelike and null geodesic contains a point at which

u ½μ R ν� � λ ½ρuσ� u�uλ 6¼ 0;

(iii) the space-time M contains no closed timelike curves – a reasonable causality
condition;29

(iv) M contains a trapped surface.

A trapped surface is the general term for the event horizon in the Schwarzschild and Kerr
cases. Consider light being emitted from all points on a spherical surface in flat space-time,
orthogonal to the surface. There is an outgoing wavefront, which diverges as it travels away,
and an incoming wavefront, which converges to the point r= 0. But now consider a surface
inside the event horizon r= 2m (or r = r+). From what we have seen above, it is clear that
both the outgoing and the incoming wavefronts actually converge, and no light escapes
through the event horizon. A surface for which this is true is defined by Penrose (1969) to be

29 If a space-time contains closed timelike world-lines, then it will be possible to start a journey from a particular
point in space and time and eventually return to the same point in space and in time. This must involve travelling
into the past (as well as the future), so that one could arrange for one’s parents never to meet, which clearly
violates causality.
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a trapped surface. So the Hawking–Penrose result is that if a trapped surface is present in a
space-timeM, with the other conditions listed above, then a singularity will be present. But
we may ask: is it possible that a singularity will occur without a trapped surface? Penrose
(1969) hypothesises not. This is the Cosmic Censorship hypothesis, that all singularities in
nature are surrounded by event horizons, and are therefore not visible from the outside
world – there are no naked singularities.

We have attempted, at least in brief outline, to answer questions (1) and (3) above. As far
as (2) is concerned, it has been shown that an equilibrium state of a vacuum black hole (i.e.
on an asymptotically flat space-time) must correspond to the Kerr solution, so the higher
multipole moments present in any realistic star will be radiated away as the star collapses
and settles down.

Further reading

An excellent account, both scholarly and very readable, of stellar collapse and black holes is
Israel (1987). An early, and still arresting, set of lectures on the subject is to be found in
Wheeler (1964). Detailed accounts of stellar equilibrium and the physics of white dwarfs
and neutron stars may be found in Weinberg (1972) and Zel’dovich & Novikov (1996).
Rather briefer, though very readable and authoritative, reviews may be found in
Chandrasekhar (1969, 1972).

The Kruskal extension of the Schwarzschild solution receives a nice treatment in Rindler
(2001), Section 12.5 and an interesting and technically undemanding account, including its
implications for wormholes and time travel may be found in Thorne (1994).

Penrose diagrams are introduced in Penrose (1964) and other good accounts of them may
be found in Wald (1984), Chapter 11, and Hawking & Ellis (1973), where also their
contribution to understanding the causal structure of space-time is treated.

Accounts of the Reissner–Nordstrøm solution may be found in Misner et al. (1973),
Papapetrou (1974), d’Inverno (1992) and Stephani et al. (2003).

Good accounts, in varying amount of detail, of the Kerr solution and the Penrose process
are to be found in Wald (1984), Novikov & Frolov (1989), Poisson (2004), Hobson,
Efstathiou & Lasenby (2006) and Plebański & Krasiński (2006).

An early and very readable account of black hole thermodynamics is Bekenstein (1980).
Authoritative and more recent accounts of this subject, as well as Hawking radiation are
Wald (1994, 2001). A more general but very stimulating book, with references to the
scientific literature, including that on black holes, thermodynamics and the holographic
principle, is Smolin (2001). For more on the holographic principle see Bousso (2002) and
Susskind & Lindesay (2005). For interesting speculation on the relation between black holes
and elementary particles see ’t Hooft (1997).

Authoritative accounts of singularities and other global matters are Hawking & Ellis
(1973), Ryan & Shepley (1975), Carter (1979), Wald (1984) and Clarke (1993). Less
complete versions may be found in Misner et al. (1973), Chapter 34, Ludvigsen (1999),
Chapter 14, and Poisson (2004). A good reference on Cosmic Censorship is Penrose (1998).
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Problems

7.1 Show that the gravitational binding energy of a sphere of constant density, massM and
radius R is

EB ¼ 3

5

GM2

R
:

7.2 Suppose that Jupiter is held in equilibrium by the balancing of gravity and the (non-
relativistic) Fermi pressure of its electrons. Given that its mass is about 10−3 times the
solar mass, estimate its density.

7.3 By integrating the TOVequation for a star of incompressible fluid, show that such a star
cannot be smaller than (9/8) times the Schwarzschild radius.

7.4 Show that in Kerr space-time, when Δ = 0 (on the event horizon), then also

g00 g33 � g03
2 ¼ 0:

7.5 Consider the process in which two black holes, of masses M1 and M2, coalesce into a
single hole of mass M3. Show that the area theorem indicates that less than half of the
initial energy can be emitted as (gravitational) radiation, and that in the Schwarzschild
case the fraction emitted is

f51� 1p
2
� 0:29:
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8 Action principle, conservation laws and the
Cauchy problem

If we take seriously – as of course wemust – the notion that Einstein’s theory of gravity has a
status equal in validity to that of other major theories of physics, for example Maxwell’s
electrodynamics or the more modern gauge field theories of particle physics, then we shall
want to ask how General Relativity may be formulated at a fundamental level. In Chapter 5
the field equations were introduced on a more or less ad hoc basis, arguing that what was
wanted were equations relating space-time curvature to the energy and momentum of the
source, that they should therefore involve second rank tensors; and that the equations also
reduced to Newton’s law in the non-relativistic limit. This approach is fine as far as it goes,
but recall that Maxwell’s equations, for example, may be derived from a principle of least
action; a Lagrangian formulation. May Einstein’s equations also be derived from a
Lagrangian formulation? Indeed they may, and this is the subject of the first part of this
chapter. We go on to investigate the tricky topic of conservation laws in General Relativity, a
subject which has complications resulting from the fact that the (matter) energy-momentum
tensor is covariantly conserved, whereas ‘true’ conservation laws involve simply partial,
rather than covariant, differentiation. The chapter finishes with a consideration of the
Cauchy, or initial value, problem. Einstein’s field equations are second order differential
equations, whose solutions will therefore involve specifying ‘initial data’ on a spacelike
hypersurface. It turns out that a distinction can then be made between ‘dynamical’ and non-
dynamical components of the metric tensor. This is important in the Hamiltonian formula-
tion of General Relativity, and therefore in some approaches to quantum gravity – though
these topics are not treated in this book.

8.1 Gravitational action and field equations

The casting of fundamental theories of physics into the language of an action principle has a
long and distinguished history. Let us recall the excellent lecture by Feynman, ‘The
Principle of Least Action’, reproduced in his Lectures on Physics,1 in which he starts by
recounting how his physics teacher, Mr Bader, said to him one day after a physics class, ‘You
look bored; I want to tell you something interesting.’ Then says Feynman, ‘he told me
something which I found absolutely fascinating. Every time the subject comes up, I work on
it.’ Mr Bader talked about the parabolic path described by a particle in free motion in a
gravitational field – which of course can be described by Newton’s law F =ma. But it can

1 Feynman et al. (1964), Chapter 19.



also be described, Mr Bader said, in terms of an action – call it S – which is the integral over
the whole of the particle’s path (equivalently over time) of the difference between the kinetic
and potential energies at any point

S ¼
ð
ðT � V Þdt: (8:1)

One may draw any number of paths between the starting and finishing points, and calculate
S for each path. The actual path taken is the one for which S is a minimum. This is an
extraordinary formulation, but one whose spirit goes back to Maupertuis’ principle – and
indeed further back than that. The principle of least action now occupies such an honourable
place in physics that almost all fundamental theories have been formulated in terms of it: we
need only recall Hamilton’s principle, variational principles in classical mechanics and
Feynman’s path-integral formulation of quantummechanics to see examples of the principle
at work.

In the area of (special) relativistic field theories the action is an integral of a Lagrange
density ℒ over space-time

S ¼
ð
ℒ d4x (8:2)

and the principle of least action results in the Euler–Lagrange equations. In almost all cases
ℒ depends on the field in question and its first derivatives only, so that in the case of a scalar
field �(x μ) for example we have

ℒð�; ∂μ�Þ ¼ 1=2ð∂ μ�Þð∂μ�Þ � 1=2m2�2 (8:3)

and the Euler–Lagrange equation

∂ℒ
∂�

� ∂
∂x μ

∂
∂ð∂μ�Þ

� �
¼ 0 (8:4)

leads to the Klein–Gordon equation of motion

ð∂ μ∂μ � m2Þ�ðxÞ ¼ 0: (8:5)

Electrodynamics may be formulated in a similar way.
The question we now wish to address is whether, and how, the Einstein field equations of

General Relativity

Rμν � 1=2 gμνR ¼ 8πG
c2

Tμν (8:6)

may also be derived from a variational principle. In the example above the field � is defined
‘on’ space-time, and similarly the electromagnetic field is conveniently represented by
A μ(x), the 4-vector potential, also a quantity defined as an additional structure existing in
space-time. But in General Relativity the ‘gravitational field’ is space-time itself ; so the first
question is, what do we take as the field variable? The usual answer is the metric tensor gμν,
and we then have to construct a Lagrangianℒ which is a function of gμν and its derivatives,
such that variation of this Lagrangian will yield the field equations. Because of the unusual
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nature of General Relativity, we expect to – and indeed shall – encounter some subtleties,
compared, say, with electrodynamics.

In the field equations (8.6) Tμν represents the contribution of matter to the gravitational
field, so in the absence of matter

Rμν � 1=2 gμνR ¼ 0 (8:7)

and there remains only the gravitational field itself. It would seem reasonable to express
the total action S as a sum of contributions from the matter and from the gravitational
field:

S ¼ Sm þ Sg: (8:8)

Let us first show that if Sg is given by

Sg ¼ c3

16πG

ð
R

ffiffiffiffiffiffiffi�g
p

d4x; (8:9)

where R=Rμν g
μν, the curvature scalar, then the action principle yields Equation (8.7). (The

overall multiplicative constant is of course irrelevant at this stage.)
We then consider a variation in the gravitational field

gμν ! gμν þ δgμν: (8:10)

Here it is to be understood that this is an actual change in the field at each point, not simply a
variation resulting from a change in coordinate system. From Equation (3.194)

G λ
μν ¼ 1=2 g λ σðgμ σ;ν þ gν σ;μ � gμν;σÞ

it follows that

δ� λ
μν¼ 1=2 δg λσ

� �
gμσ;ν þ gνσ;μ � gμν;σ
� �

þ 1=2 g λσ δgμσ
� �

;ν þ δgνσð Þ;μ � δgμν
� �

;σ
� �

: (8:11)

Now

g λ σgσ ρ ¼ δ λ
ρ ) δg λ σ ¼ �g λ �gσ ρðδg� ρÞ (8:12)

and when substituted into (8.11) this gives

δG λ
μν ¼ �g λ� δg� ρGρ

μν þ 1=2 g λ σ½ðδgμ σÞ; ν þ ðδgν σÞ; μ � ðδgμνÞ;σ �: (8:13)

From the usual formula for the covariant derivative of a rank 2 tensor

ðδgμ σÞ;ν ¼ ðδgμ σÞ;ν � Gρ
μν δgρ σ � Gρ

σ ν δgρ μ; (8:14)

hence

ðδgμ σÞ;ν þ ðδgν σÞ; μ � ðδgμνÞ; σ ¼ ðδgμ σÞ; ν þ ðδgν σÞ; μ � ðδgμνÞ; σ þ 2Gρ
μν δgρ σ; (8:15)

and from (8.13)
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δG λ
μν ¼ 1=2 g λ σ½ðδgμ σÞ; ν þ ðδg ν σÞ;μ � ðδgμνÞ; σ�; (8:16)

where the covariant derivatives are calculated using the unperturbed connection coefficients
Γ λ

μν . This equation shows that δΓ λ
μν is a tensor – which Γ λ

μν is not. By virtue of this we
may write for the covariant derivative

ðδG λ
μνÞ;� ¼ ðδG λ

μνÞ; � � Gρ
μ� δG λ

ρ ν � Gρ
ν� δG λ

ρ μ þ G λ
ρ� δGρ

μν

and hence, contracting the indices ν and λ (leaving μ and κ as the only free indices)

ðδG λ
μλÞ;� � ðδG λ

μ�Þ; λ ¼ ðδG λ
μ λÞ; � � ðδG λ

μ�Þ; λ � Gρ
μ� δG λ

ρ λ þ G λ
ρ� δGρ

μ λ

þ Gρ
μ λ δG λ

ρ� � G λ
ρ λ δGρ

μ�: (8:17)

On the other hand, since

Rμ� ¼ R λ
μ λ� ¼ G λ

μ�; λ � G λ
μ λ; � þ Gρ

μ� G λ
λ ρ � Gρ

μ λ G λ
� ρ;

then

δRμ� ¼ ðδG λ
μ�Þ; λ � ðδG λ

μ λÞ; � þ ðδGρ
μ�ÞG λ

ρ λ þ Gρ
μ�ðδG λ

ρ λÞ
� ðδGρ

μ λÞG λ
ρ� � Gρ

μ λðδG λ
ρ�Þ: (8:18)

Labelling the six terms on the right hand side of (8.17) by 1, 2, 3, 4, 5 and 6, the six terms on
the rhs of (8.18) are respectively 2, 1, 6, 3, 4 and 5; so we have finally

δRμ� ¼ ðδG λ
μ�Þ; λ � ðδG λ

μ λÞ;�; (8:19)

known as the Palatini identity. Note that here the covariant derivatives are defined as if δΓ
were a tensor – which it is. Note also, in passing, that δRμκ may be written in the form
(Problem 8.1)

δRμ� ¼ 1=2 g λ σ ½ðδgσ μÞ;�; λ þ ðδgσ �Þ; μ; λ � ðδgμ�Þ; σ; λ � ðδgλ σÞ; μ;��: (8:20)

We are concerned to derive the field equations, so wish to vary the action (8.9).
Defining

ℒg ¼ �
ffiffiffiffiffiffiffi�g

p
R; � ¼ c3

16πG
; (8:21)

we have

δℒg ¼ � δð ffiffiffiffiffiffiffi�g
p

RÞ ¼ � δð ffiffiffiffiffiffiffi�g
p

g μνRμνÞ
¼ �f ffiffiffiffiffiffiffi�g

p
Rμν δg

μν þ Rðδ ffiffiffiffiffiffiffi�g
p Þ þ ffiffiffiffiffiffiffi�g

p
g μν δRμ vg:

(8:22)

We first show that, by virtue of the Palatini identity, the last term in (8.22) is a total
derivative. Indeed, from (8.19)

ffiffiffiffiffiffiffi�g
p

g μ� δRμ� ¼ ffiffiffiffiffiffiffi�g
p

g μ�½ðδG λ
μ�Þ; λ � ðδG λ

μ λÞ;��
¼ ffiffiffiffiffiffiffi�g

p ½ðg μ� δG λ
μ�Þ;λ � ðg μ� δG λ

μ λÞ;��
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since g μκ
;λ = 0. Now it follows from (3.202b) and (3.212) that

V μ
; μ ¼ 1ffiffiffiffiffiffiffi�g

p ð ffiffiffiffiffiffiffi�g
p

V μÞ; μ

hence ffiffiffiffiffiffiffi�g
p

g μ� δRμ� ¼ ð ffiffiffiffiffiffiffi�g
p

g μ� δG λ
μ�Þ; λ � ð ffiffiffiffiffiffiffi�g

p
g μ� δG λ

μ λÞ; �
¼ ∂λ½ ffiffiffiffiffiffiffi�g

p
g μ� δG λ

μ� � ffiffiffiffiffiffiffi�g
p

g μ λ δG�
μ��

� ∂λ W
λ; (8:23)

a total divergence. Then, if we are evaluating
Ð
Ω
δ

ffiffiffiffiffiffiffi�g
p

R
� �

over the regionΩwith δgμν= 0 on

the boundary ∂Ω (see Fig. 8.1), by Gauss’s theorem the total divergence does not contribute.
Furthermore, since

δð ffiffiffiffiffiffiffi�g
p Þ ¼ �1=2

ffiffiffiffiffiffiffi�g
p

gμν δg
μν;

then (8.22) and (8.23) give

δð ffiffiffiffiffiffiffi�g
p

RÞ ¼ ffiffiffiffiffiffiffi�g
p

δg μνðRμν � 1=2 gμνRÞ þ ∂λW
λ (8:24)

and, from (8.9)

δSg ¼ c3

16πG

ð
Ω

δg μνðRμν � 1=2 gμν RÞ d4x: (8:25)

The principle of least action dictates that δSg= 0 for arbitrary δg μν, giving finally

Rμν � 1=2 gμνR ¼ 0; (8:26)

the vacuum field equations. We conclude that (8.9) is a suitable expression for the action of a
gravitational field.

Turning now to the inclusion of matter and radiation, if we accept that they interact with
gravity through the energy-momentum tensor, this furnishes a definition of this tensor; in
other words a change δgμν in the gravitational field will result in a change in the matter action
Sm (Equation (8.8)) of

Ω 

gμν → gμν + δgμν

δgμν = 0 on ∂Ω

∂Ω

Fig. 8.1 A space-time Ω with boundary ∂Ω; the variation of the metric tensor vanishes on the boundary.
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δSm ¼ � c

2

ð
T μνðxÞ ffiffiffiffiffiffiffi�g

p
δgμν d

4x: (8:27)

This defines T μν. Note that since gμν=gνμ, then T μν is also symmetric

T μν ¼ T ν μ: (8:28)

The equation above then implies a matter action equal to

Sm ¼ � c

2

ð
T μνðxÞ ffiffiffiffiffiffiffi�g

p
gμν d

4x; (8:29)

giving a total action

S ¼ Sg þ Sm ¼
ð

c3

16πG
R� c

2
Tμνg

μν

	 
 ffiffiffiffiffiffiffi�g
p

d4x: (8:30)

On variation of gμν

δS ¼
ð

c3

16πG
Rμν � 1

2
gμνR

� �
� c

2
Tμν

	 

δg μν ffiffiffiffiffiffiffi�g

p
d4x; (8:31)

and δS = 0 gives

Rμν � 1=2 gμνR ¼ 8πG
c2

Tμν; (8:32)

the matter field equations. We conclude that (8.29) is a valid expression for the contribution
of matter (and radiation) to the action.

8.2 Energy-momentum pseudotensor

The left hand side of the field equation (8.6) above obeys

ðR μν � 1=2 g μνRÞ; ν ¼ 0;

and it therefore follows that

T μν
; ν ¼ 0; (8:33)

which is a statement of energy-momentum conservation, but in covariant form. This is not
ideal, however; if energy and momentum are truly conserved we should be looking for a
conservation law of the form, involving simply a partial divergence,

W μν
; ν ¼ ∂

∂xν
W μν ¼ 0: (8:34)

It is our task in this section to find a form for W μν. It turns out that that is possible, and the
extra contribution to W μν, apart from T μν, is interpreted as coming from the gravitational
field itself.
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To begin, let us consider again a variation in the metric tensor, given by Equation (8.10).
The requirement that this variation is not simply a consequence of a coordinate change, but
represents a ‘real’ change in the gravitational field, is, translated into mathematical lan-
guage, the statement that it is described by a Lie derivative

�x μ ¼ x μ � ε a μðxÞ � x μ � ε μ; (8:35)

as in Equation (6.121) above. Then

δgμν ¼ εðgμ λ a λ
; ν þ gλ ν a

λ
; μ þ gμν; λ a

λÞ: (8:36)

Write the action (8.9) (or (8.21)) as

Sg ¼ �

ð
~R d4x; (8:37)

~R ¼ ~R μν gμν; ~R μν ¼ ffiffiffiffiffiffiffi�g
p

R μν: (8:38)

Then under (8.36)

δSg ¼ ε�
ð
ð ~R μν gμλ a

λ
; ν þ ~R μν gλ ν a

λ
; μ þ ~R μν gμν;λ a

λÞ d4x:

The first term in the integrand may be written as

∂νð ~R μν gμλ ε
λÞ � ð ~R μν gμλÞ; ν ε λ:

Re-expressing the total divergence as a surface term, which will vanish if a μ(x) vanishes on
the surface, and performing the same operation on the second term, gives

δSg ¼ ε�
ð
½�ð ~R μν gμ λÞ; ν � ð ~R μν gνλÞ; μ þ ~R μνgμν; λ� a λ d4x; (8:39)

and noting that aλ is arbitrary, this implies that

2ð ~R μνgμλÞ; ν � ~R μν gμν; λ ¼ 0

or

ð ~Rν
λÞ;ν � 1=2 ~R μν gμν; λ ¼ 0: (8:40)

This equation is actually

~Rν
λ ; ν ¼ 0 (8:41)

(see Problem 8.2), or equivalently

~R μν
; ν ¼ 0:

We have already seen that because of the contracted Bianchi identities and the field
equations, we have

ðR μν � 1=2g μνRÞ;ν ¼ 0; T μν
;ν
¼ 0:
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It follows immediately that

½ ffiffiffiffiffiffiffi�g
p ðR μν � 1=2 g μνRÞ�; ν ¼ 0; ~T μν

; ν ¼ 0;

where ~T μν ¼ ffiffiffiffiffiffiffi�g
p

T μν; or, in virtue of the equivalence of (8.40) and (8.41),

~T ν
μ ;ν � 1=2 ~T�λg�λ;μ ¼ 0: (8:42)

This equation, which is a consequence of the covariant conservation law (8.33), is approach-
ing, but is still not actually in, the most desirable form for a conservation law. We need to
show that the second term in (8.42) can be expressed as a divergence. To do this, note that
(see (8.29))

c

2
~T μν ¼ � δℒ

δgμν
¼ � ∂ℒ

∂gμν
þ ∂λ

∂ℒ
∂ð∂λgμνÞ

	 

:

Then

c

2
~T μν gμν; λ ¼ � ∂ℒ

∂gμν
gμν;λ þ ∂�

∂ℒ
∂ð∂�gμνÞ

	 

gμν;λ

¼ ∂�
∂ℒ

∂ð∂�gμνÞ gμν;λ
	 


� ∂ℒ
∂gμν

gμν;λ þ ∂ℒ
∂ð∂�gμνÞ gμν;�;λ

( )

¼ ∂�
∂ℒ

∂ð∂�gμνÞ gμν;λ
	 


� ∂ℒ
∂x λ

¼ ∂ℒ
∂ð∂�gμνÞ gμν;λ � δ�λℒ

	 

;�

:

(8:43)

Hence (8.42) is

ð ~Tμν þ tμ
νÞ; ν ¼ 0 (8:44)

with

tμ
ν ¼ c δμ

νℒ� ∂ℒ
∂ð∂νg�λÞ g�λ; μ

	 

: (8:45)

Equation (8.44) is now in a satisfactory form for a conservation equation, and it shows that
the ‘source’ of gravity is not simply T μν but T μν+ t μν. It is reasonable to suppose that t μν

represents the energy-momentum of the gravitational field itself, but to make this more
convincing we must make some adjustments to the Lagrangian (8.21). The important point
is that this Lagrangian involves second order as well as first order derivatives of the metric
tensor (since the Riemann tensor itself involves these). We want to find a Lagrangian
involving only gμν and its first order derivatives only, and it turns out we can do this by
subtracting a total divergence from ℒ.
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From (4.23) we have

ℒ ¼ �
ffiffiffiffiffiffiffi�g

p
R ¼ �

ffiffiffiffiffiffiffi�g
p

g λ μ Rλ μ ¼ �
ffiffiffiffiffiffiffi�g

p
g λ μ Rρ

λ ρ μ

¼ �
ffiffiffiffiffiffiffi�g

p
g λ μ ðG�

λ μ; � � G�
λ�; μ þ G�

ρ�Gρ
λ μ � G�

ρ μGρ
λ�Þ: (8:46)

The first two terms are

ℒ1 ¼ �
ffiffiffiffiffiffiffi�g

p
g λ μðG�

λ μ;� � G�
λ�;μÞ

¼ �ð ffiffiffiffiffiffiffi�g
p

g λ μGα
λ μ � ffiffiffiffiffiffiffi�g

p
g λαG�

λ�Þ;α
� �ð ffiffiffiffiffiffiffi�g

p
g λ μÞ;αGα

λ μ þ ð ffiffiffiffiffiffiffi�g
p

g λ αÞ;αG�
λ�: (8:47)

In addition, noting that ð ffiffiffiffiffiffiffi�g
p

g λμÞ;α ¼ 0 and hence (see (3.224))

ð ffiffiffiffiffiffiffi�g
p

g λ μÞ;α ¼ �G λ
� α

ffiffiffiffiffiffiffi�g
p

g�μ � G μ
� α

ffiffiffiffiffiffiffi�g
p

g� λ þ ffiffiffiffiffiffiffi�g
p

g λ μGρ
ρ α;

we obtain, after some cancelling and some addition of terms,

ℒ1¼ �
ffiffiffiffiffiffiffi�g

p
g λ μ �ν

λ μ � ffiffiffiffiffiffiffi�g
p

g λ ν ��
λ�

� �
;ν

þ 2�
ffiffiffiffiffiffiffi�g

p
g� λ � μ

� ν �
ν
λ μ � � μ

� λ�
ν
μ ν

� �
:

This, when substituted into (8.46) gives

ℒ ¼ ℒ0 þ Aν
;ν (8:48)

with

Aν¼ �
ffiffiffiffiffiffiffi�g

p
g λμ�ν

λμ � g λν��
λ�

� �
;

ℒ0 ¼ �
ffiffiffiffiffiffiffi�g

p
g�λ � μ

�ν �
ν
λμ � � μ

�λ �
ν
μν

� �
:

(8:49)

Making the usual observation that a total divergence in the action has no effect (on
the field equations), we may use, instead of ℒ in the definition (8.45) of tμ

ν, the
Lagrangian ℒ0:

tμ
ν ¼ c δμ

ν ℒ0 � ∂ℒ0

∂ð∂νg�λÞ g� λ;μ
	 


: (8:50)

The important point about ℒ0 is that, unlike R=g μνRμν, it only contains the metric tensor
and its first derivatives

ℒ0 ¼ ℒ0ðgμν; gμν;λÞ:
The consequence of this is that in a geodesic coordinate system, in which the first derivatives
of gμν vanish, t

μν also vanishes, t μν= 0. In other coordinate systems this is not the case, so t μν

is not a tensor – it vanishes in some coordinate systems but not in others. It is commonly
called a ‘pseudotensor’. The covariant conservation law T μν

;ν= 0, in which a ‘sham’ (to use
Schrödinger’s word2) divergence is used, is replaced by

2 Schrödinger (1985).
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ðT μν þ t μνÞ;ν ¼ 0; (8:51)

in which t μν is a ‘sham’ tensor.
What is the meaning of t μν ? In any system held together by gravity, the gravitational

field itself contributes to the total mass (equivalently, to the energy), and therefore
contributes to its own source (rather like the Yang–Mills field in particle physics). In
saying, then, that T μν + t μν is the source of the gravitational field, it seems perfectly
reasonable, given that T μν represents the contribution of matter, to identify t μν as the
contribution of the gravitational field to the energy-momentum tensor. It is also to be
expected that this contribution is not tensorial, since, by virtue of the equivalence
principle, in an inertial frame the gravitational field locally disappears, so of course
will carry no energy or momentum; whereas in an arbitrary frame of refernce the energy
of the field will not be zero. We cannot, then, identify a place, or places, where the
gravitational field exists and carries energy, since whether the field carries energy also
depends on the frame of reference. Gravitational energy is not localisable. We must not,
however, forget that, despite the non-covariant nature of some of the quantities we have
been concerned with, our whole formalism is relativistically covariant. The gravitational
field certainly contributes to the mass-energy of a bound system, but this contribution is
not localisable. It is, one may reflect, rather neat – Penrose3 uses the word ‘miraculous’ –
to see how this fits together.

8.3 Cauchy problem

The vacuum field equations

Rμν ¼ 0 (8:52)

are second order differential equations for the components of the metric tensor, so it is
reasonable to suppose that, to find a solution, we must first be given the values of gμν and its
time derivatives gμν,0 on a spacelike hypersurface S – for example the hypersurface x0 = 0, as
sketched in Fig. 8.2. Note that if gμν is given over the hypersurface, then the spatial
derivatives gμν,i are already known; in fact, all the spatial derivatives of gμν will be
known, and the first order time derivatives are also specified, so the only unknown functions
are gμν,00, the second order time derivatives, and these will be found from the field equations
(8.52). And then, by differentiation with respect to t, the third and higher order time
derivatives may be found, so (assuming that gμν is an analytic function of t) gμν can then
be found for all time.

We are therefore looking to the field equations to give us expressions for the second order
time derivatives gμν,00 – that is for gik,00, gi0,00 and g00,00. These ten functions are all we need
to know. The field equations depend on the Riemann tensor, which, as will now be shown,
can be written as

3 Penrose (2004), p. 468.
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Rσ λ μν ¼ 1=2ðgσ ν; λ μ � gσ μ; λ ν þ gλ μ; σ ν � gλ ν; σ μÞ
þ gα βðGα

σ ν G
β
λ μ � Gα

σ μ G
β
λ νÞ:

(8:53)

To see this, note that from (4.31) we have

Rσ λ μν ¼ gσ �R
�
λ μν

¼ gσ �ðG�
λ ν; μ � G�

λ μ;νÞ þ gσ �ðG�
ρ μ Gρ

λ ν � G�
ρ ν Gρ

λ μÞ
¼ 1=2 gσ �∂μ½g� τðgτ λ; ν þ gτ ν; λ � gλ ν; τÞ�
� 1=2 gσ � ∂ν½g�τðgτ λ;μ þ gτ μ; λ � gλ μ; τÞ�
þ gσ�ðG�

ρ μ Gρ
λ ν � G�

ρ ν Gρ
λ μÞ:

In the first two terms, noting that

gσ � ∂μ g
� τ ¼ �g� τ ∂μ gσ � ¼ �g� τðgη σ Gη

� μ þ gη� Gη
σ �Þ

(by explicit calculation), we find, after some algebra and much cancellation of terms,
Equation (8.53). The first bracket in this equation contains second derivatives of the
metric tensor, and the second bracket only first order derivatives. The second bracket is
therefore included in the initial data. The second order time derivatives, because of the
antisymmetry properties of the Riemann tensor, come from Ri0k0, and these will yield
only gik,00, not gi0,00 or g00,00. This could be called a problem of underdetermination –

the field equations will determine neither gi0,00 nor g00,00. The components of the Ricci
tensor are

R00 ¼ R μ
0μ 0 ¼ Ri

0 i 0 ¼ giμRμ 0 i 0 ¼ gi kR0 i 0 k

¼ gi kð�1=2 gi k; 00 þ � � �Þ
¼ �1=2gikgi k; 00 þ ðIDÞ00 (8:54)

(where ID stands for initial data),

R0 i ¼ R μ
0 μ i ¼ g μ λRλ 0 μ i ¼ g μ kRk0μ i

¼ g0 kRk 0 0 i þ ðIDÞ0 i

¼ 1=2 g0 kgi k;0 0 þ ðIDÞ0 i (8:55)

and

Given gμν and gμν, 0 S (x 0 = 0)

Fig. 8.2 The spacelike hypersurface S, defined by x0 = 0, on which the metric tensor and its first

derivatives are given.
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Ri k ¼ R μ
i μ k ¼ g00 R0 i 0 k þ ðIDÞi k

¼ �1=2 g00gi k; 00 þ ðIDÞi k :
(8:56)

On the other hand, the field equations (8.52) (= (8.54) + (8.55) + (8.56)) are 10 equations for
the 6 unknowns gik,00 – a problem of overdetermination. This problemwill have to be solved
by demanding compatibility requirements for the initial data.

Let us summarise the situation so far. To determine the complete evolution of a space-time
we want to find the 10 quantities gμν,00. The field equations Rμν= 0 only give gik,00 – they do
not give gi0,00 or g00,00: this is Problem 1. On the other hand the field equations are 10
equations in 6 unknowns, so there must be compatibility requirements in the initial data: this
is Problem 2.

To solve Problem 1, we shall show that there is a coordinate system in which

gi 0; 00 ¼ 0; g00;00 ¼ 0: (8:57)

These are four equations, which can be made to follow from the four components of a
coordinate transformation: we propose the transformation

x0μ ¼ x μ þ ðx0Þ3
6

A μðxÞ: (8:58)

The spacelike hypersurface S on which the initial data are specified is x0 = 0, so

x0μ ¼ x μ on S: (8:59)

From (8.58)

∂x0μ

∂xν
¼ δ μ

ν þ δ0ν
ðx0Þ2
2

A μ þ ðx0Þ3
6

A μ
;ν; (8:60)

giving

∂x0μ

∂xν
¼ δ μ

ν on S: (8:61)

Differentiating further it is straightforward to see that

∂2x0μ

∂x ν∂ xλ
¼ 0 on S; (8:62)

and from (8.60), that

∂x0μ

∂x0

� �
;00

¼ A μ on S: (8:63)

Now the metric tensor transforms as

gμν ¼ g0� λ
∂x0x

∂x μ
∂x0 λ

∂xν
; (8:64)

so, from (8.61),
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gμν ¼ g0μν on S: (8:65)

In addition, noting that

gμν; λ ¼ ∂
∂x0ρ

g0� σ
∂x0�

∂x μ
∂x0σ

∂xν

� �
∂x0ρ

∂x λ

¼ g0�σρ
∂x0�

∂x μ
∂x0σ

∂xν
∂x0ρ

∂x λ

þ g0� σ
∂2x0�

∂x μ∂x λ
∂x0σ

∂xν
þ ∂x0�

∂x μ
∂2x0σ

∂xν∂x λ

� �
;

(8:66)

it follows from (8.61) and (8.62) that

gμν; λ ¼ g0μν; λ on S: (8:67)

Equations (8.65) and (8.67) imply that the initial data are unchanged in the new coordinate
system. We must now show that it is possible to choose A μ in (8.58) such that (8.57) holds.
The calculations are actually straightforward and are set as a problem: they involve simply
showing that

g00;00 ¼ g000;00 þ 2A μ gμ 0 on S; (8:68)

g0i; 00 ¼ g00i; 00 þ gμ i A
μ on S; (8:69)

and

gi k; 00 ¼ g0ik;00 on S: (8:70)

Then, choosing A μ such that

g00;00 ¼ 2A μ gμ 0 ð1 conditionÞ
g0i;00 ¼ gμ iA

μ ð3 conditionsÞ
will mean that

g000;00 ¼ g00 i; 00 ¼ 0;

as claimed in (8.57). We have now solved Problem 1.
Turning to Problem 2, we now regard the equations (see (8.56))

Ri k ¼ 0 (8:71)

as evolution, or dynamical equations. They are six equations for the six unknown functions
gik,00. The remaining four equations

Ri 0 ¼ 0; R0 0 ¼ 0 (8:72)

can be shown to involve the initial data only, and therefore to act as constraints on them. For
we see that, from the field equations

g00 R00 � gi k Ri k ¼ 0; (8:73)
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so (8.54) and (8.56) give

g00ðIDÞ00 � gikðIDÞi k ¼ 0: (8:74)

This is a constraint (one constraint) on the initial data – expressed in the form (8.73). This
equation, however, is equivalent to

G0
0 ¼ 0; (8:75)

since

G0
0 ¼ R0

0 � 1=2R ¼ R0
0 � 1=2ðg μνRμνÞ ¼ g0μR0μ � 1=2ðg μνRμνÞ

¼ 1=2ðg00R00 � gikRikÞ;

which vanishes, according to (8.73).
In a similar way, the field equations also imply that

g00Ri0 þ g0kRik ¼ 0; (8:76)

but from (8.55) and (8.56) this is the same as

g00ðIDÞ0i þ g0kðIDÞi k ¼ 0; (8:77)

and therefore acts as three constraints on the initial data. On the other hand

Gi
0 ¼ Ri

0 ¼ g0μ Riμ ¼ g00Ri0 þ g0kRik ;

so (8.76) – and therefore (8.77) – can be stated in the form

Gi
0 ¼ 0: (8:78)

Summarising, the vacuum field equations Rμν= 0 may be put in the form

Ri k ¼ 0 evolution equations;

Gi
0js ¼ 0 constraints on the initial data:

(8:79)

Problem 2 is now solved and the Cauchy, or initial value problem is now cast into the form
(8.79) above, where a distinction is made between dynamical and non-dynamical variables.
This is as far as we shall go in our account of these matters, but it is pertinent to remark that the
point we have reached marks the beginning of a particular approach to the study of the
dynamics of General Relativity. This is based on what is known as a 3+ 1 split, separating
time (1) from space (3) by describing the evolution of spacelike hypersurfaces in time. Since the
overall formalism is invariant under general coordinate transformations, there is noworry about
lack of covariance in any of the calculations. This approach was pioneered by Arnowitt, Deser
andMisner (1962), and is also important in the Hamiltonian formulation of General Relativity.
It is perhaps also worth remarking that Maxwell’s equations of electrodynamics may also be
represented by those equations which are truly dynamical and those which act as constraints.
This division exists essentially because of the gauge invariance of electrodynamics; and in
General Relativity it is general coordinate invariance that plays a role analogous to that of gauge
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invariance in electrodynamics. Finally, this whole subject comes into its own as one way of
approaching quantum gravity. For more details see ‘Further reading’.

Further reading

An excellent account of the role of the least action principle in physics is Yourgrau &
Mandelstam (1968). The expressions (8.50) and (8.51) for the conservation of energy and
the energy-momentum pseudotensor first appear in Einstein (1916a). Detailed accounts of
this topic may be found in Anderson (1967), Davis (1970), Papapetrou (1974), as well as in
some of the older books: Bergmann (1942), Weyl (1952), Pauli (1958). A good account also
appears in Landau & Lifshitz (1971). Very readable and rather enlightening versions of this
topic may be found in Mehra (1973), Pais (1982) and Schrödinger (1985).

Good accounts of the Cauchy problem may be found in Bruhat (1962) and Adler et al.
(1975). Considerably more sophisticated versions may be found in the books of Hawking &
Ellis (1973) and of Wald (1984). The seminal work on the dynamics of General Relativity is
Arnowitt et al. (1962); see also Misner et al. (1973). For the Hamiltonian formulation of
General Relativity see for example Misner et al. (1973), Wald (1984), Poisson (2004); and
also Padmanabhan (1989) and Barbashov et al. (2001). Introductions to the topic of
constraints in quantum field theory may be found in Itzykson & Zuber (1980) and
Weinberg (1995); see also Dirac (2001).

Problems

8.1 Prove that under a small variation in the gravitational field

gμν ! gμν þ δgμν

the change in the Ricci tensor is

δRμ� ¼ 1=2g λ σ½ðδgσμÞ;�; λ þ ðδgσ�Þ; μ; λ � ðδgμ�Þ; σ; λ � ðδgλσÞ; μ;��:
8.2 Prove Equation (8.41) from (8.40), using Equation (3.224).
8.3 Prove Equations (8.68) to (8.70).
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9 Gravitational radiation

The question whether gravitational radiation exists is of great interest, both theoretically and
experimentally. In the weak field approximation Einstein’s field equations lead to a wave
equation, which, in analogy with the situation withMaxwell’s equations of electrodynamics,
clearly suggests that gravitational waves exist; and, it would be hoped, again in analogy with
the electrodynamic case, that they carry energy. We recall the crucial discovery by Hertz of
electromagnetic waves, which convinced him, as well as the general public, of the reality of
the field. From the 1960s Weber pioneered experiments to search for gravitational waves,
but they have not yet been found. On the other hand there is some very convincing, though
indirect, evidence that the gravitational field may radiate energy, which comes from the
discovery that the period of the binary pulsar PSR 1913+16 is decreasing. One may feel
justified in taking an optimistic view that gravitational radiation exists and might soon be
discovered.

On the theoretical side there is a problem which is totally absent in the electromagnetic
case. General Relativity is a non-linear theory, and this has the physical consequence that the
gravitational field itself carries energy – witness the pseudo-energy-momentum tensor
discussed earlier – which then acts as a source for more gravitational field. In contrast the
electromagnetic field carries no electric charge so is not a source of further field. In the
language of quantum theory, there is a graviton–graviton coupling but no photon–photon
coupling. So while a wavelike solution to the gravitational field equations might have been
found in the weak field approximation – which is linear! – an obviously important question
is, does General Relativity, as a complete mathematical structure with no approximation,
exhibit radiative solutions to the field equations? This is ultimately a question about the
Riemann tensor and, using the insights provided by the Petrov classification, it turns out that
it does. These are the topics to be discussed in the present chapter, which we begin with a
consideration of the weak field approximation.

9.1 Weak field approximation

The weak field approximation is the linear approximation, which was discussed in
Chapter 6, and amounts to the assumption (6.1)

gμ ν ¼ ημ ν þ hμ ν; hμ ν � 1: (9:1)

We recall that in this approximation the energy-momentum tensor Tμν obeys the conserva-
tion law (6.6)



T μ
v;μ ¼ 0: (9:2)

The harmonic coordinate condition, defined by (6.18), plays a significant role in this
approximation and it is useful to note that it may equivalently be stated in the forms

gμ v Gλ
μ v ¼ 0 (9:3)

and

hμv;μ ¼ 1

2
hμμ;v (9:4)

(see Problem 9.1). It is straightforward to see that the field equations (6.19)

□ fμ v ¼ 16πG
c2

Tμ v

may be written as

□ hμ v ¼ 16πG
c2

Sμ v (9:5)

where

Sμ v ¼ Tμ v � 1=2 gμ vT
λ
λ

as in (6.5). Equation (9.5) has the retarded potential solution

hμ vðx; tÞ ¼ 4G

c2

ð
Sμ vðx0; t � jx� x0j

c Þ
jx� x0j d3x0: (9:6)

In vacuo the field equation reduces to

□ hμ v ¼ 0: (9:7)

So far this is quite general. We want to look for a solution to the field equations which
represents a plane wave emanating from a particular source. The plane wave is given by

hμ v ¼ εμ v expðikλxλÞ þ ε�μ v expð�ik λxλÞ: (9:8)

The field equation (9.7) is satisfied if

kμkμ ¼ 0 (9:9)

and the harmonic condition (9.4) requires

kμε
μ
v ¼ 1

2
kvε

μ
μ: (9:10)

Since hμν is symmetric, so is εμν

εμ v ¼ εv μ: (9:11)

εμν has 10 independent components and (9.10) amounts to four conditions, so there remain
six independent components. These, however, do not all have physical significance, for we
may make a coordinate transformation
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x0μ ¼ xμ þ �μðxÞ; (9:12)

under which the metric tensor becomes

g0μ v ¼
∂xρ

∂x0μ
∂xσ

∂x0ν
gρ σ ¼ ðδρμ � �ρ;μÞðδσv � �σ;vÞgρ σ ¼ gμ v � �ρ;μ gρ v � �σ;v gμ σ

to lowest order in ξ; equivalently

h0μ v ¼ hμ v � �μ;v � �v;μ: (9:13)

We may write ξ μ in the form (suitable for a plane wave)

�μðxÞ ¼ i eμeikx� i e�μe
�i k x (9:14)

and then (9.8) and (9.13) give

ε0μ v ¼ εμ v þ kμev þ kveμ: (9:15)

The four parameters eμ mean that the number of independent components of εμν (and
therefore hμν ) is 6− 4 = 2. To find these two explicitly, consider a wave travelling in the z
direction, so

k3 ¼ k0 � kð40Þ; k1 ¼ k2 ¼ 0; (9:16)

then (9.10) gives, for ν = 0, 1, 2, 3,

ε30 þ ε00 ¼ � 1

2
ð�ε00 þ ε11 þ ε22 þ ε33Þ;

ε01 þ ε31 ¼ 0; ε02 þ ε32 ¼ 0;

ε33 þ ε03 ¼ 1

2
ð�ε00 þ ε11 þ ε22 þ ε33Þ:

These equations enable us to express the four quantities εi0 and ε22 in terms of the other
six εμν:

ε01 ¼ �ε31; ε02 ¼ �ε32; ε03 ¼ �1=2ðε00 þ ε33Þ; ε22 ¼ �ε11: (9:17)

Under the transformation (9.15) we have

ε011 ¼ ε11; ε012 ¼ ε12; ε013 ¼ ε13 þ ke1; ε023 ¼ ε23 þ ke2;

ε033 ¼ ε33 þ 2ke3; ε000 ¼ ε00 � 2ke0:
(9:18)

Then, putting

ke1 ¼ �ε13; ke2 ¼ �ε23; ke3 ¼ � 1

2
ε33; ke0 ¼ 1

2
ε00;

we find

ε013 ¼ ε023 ¼ ε033 ¼ ε000 ¼ 0;

leaving, as the only non-zero components, ε11, ε12 = ε21 and ε22 = – ε11. Hence, dropping the
primes, hμν becomes
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hμ v ¼
0 0 0 0
0 h11 h12 0
0 h12 �h11 0
0 0 0 0

0
BB@

1
CCA: (9:19)

This expression holds for the propagation of a wave in the z direction. Since hμν contains
only two independent components, it follows that there are two polarisation states of
gravitational radiation. This form for hμν is called the transverse-traceless or TT form. The
only non-zero components of hμν are the space-space ones hik, and – for propagation in the z
direction – h3k= 0; so hμν contains only components transverse to the direction of propaga-
tion. In addition the trace is zero, so we have

hTT0i ¼ hTT μ
μ ¼ 0: (9:20)

It is a straightforward to write an expression for hμν corresponding to propagation of a
wave in the x direction. In place of (9.16) we have

k1 ¼ k0 � kð40Þ; k2 ¼ k3 ¼ 0;

the rest of the algebra proceeds in an analogous way and we finish up with

hμ v ¼
0 0 0 0
0 0 0 0
0 0 h22 h23
0 0 h23 �h22

0
BB@

1
CCA: (9:21)

We complete this section by making two observations following from the fact that gravita-
tional radiation has two degrees of polarisation: these concern the spin of the graviton, and
the behaviour of matter when it is hit by a gravitational wave.

9.1.1 Spin 2 graviton

To talk about ‘gravitons’ at all is immediately to introduce the language of quantum theory
into what has so far been a completely classical discussion – since, of course, the graviton is
defined as being the quantum of the gravitational field, analogous to the photon, the
quantum of the electromagnetic field. Although there exists no proper quantum theory of
gravity at present it is nevertheless possible, in the weak field approximation, to talk about
gravitons as fields hμν existing and propagating in a Minkowski space background. In a fully
fledged theory of gravity the metric tensor itself will be subject to some sort of quantisation,
but the present considerations are much more limited than this.

Spin was introduced into quantum physics as intrinsic angular momentum possessed by
electrons, which may be represented by the Pauli spin matrices, which obey the same
commutation relations as the generators of the rotation group SO(3), or SU(2).1 There is a

1 See any book on quantum mechanics; for example Cohen-Tannoudji et al. (1977), Vol. 1, Chapter 4, or Sakurai
(1994), Chapter 3.
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deep connection between rotations and angular momentum and in quantum theory this is
manifested by the fact that under a rotation in parameter space the state in question (for
example a spin ½ particle) corresponds to a set of vectors in Hilbert space which act as the
basis states for a representation of the rotation group. Consider for simplicity a rotation
about the z axis through an angle θ, which in coordinate space is given by the matrix

RðθÞ ¼
cos θ sin θ 0
� sin θ cos θ 0

0 0 1

0
@

1
A; (9:22)

so that the transformation

RðθÞ
x
y
z

0
@

1
A ¼

x0

y0

z0

0
@

1
A

gives x0 = x cos θ+ y sin θ, and so on. The state (ex, ey, ez) transforms according to this
(adjoint) representation of the rotation group if, under the same rotation about the z axis

e0x
e0y
e0z

0
@

1
A ¼ RðθÞ

ex
ey
ez

0
@

1
A; (9:23)

or, in index notation, with (ex, ey, ez) = (e1, e2, e3),

ei
0 ¼ Ri kek ði; k ¼ 1; 2; 3Þ (9:24)

(and there is no need to distinguish upper and lower indices). The two equations above
describe how the state of a spin 1 particle changes under a rotation, according to quantum
theory. It is then easy to see that, with the explicit form (9.22) for the rotation matrix

e1
0 � i e20 ¼ eiθðe1 � i e2Þ; e3

0 ¼ e3; e1
0 þ i e20 ¼ e�i θðe1 þ i e2Þ;

that is to say, the three states e–, e3, e+ respectively have helicity h= 1, 0, − 1:

RðθÞ eðhÞ ¼ eihθeðhÞ: (9:25)

This is how the polarisation of the photon is usually described in quantum theory; the photon
has three polarisation states, of which two are transverse and one is longitudinal. As is well
known, however, the longitudinal state is unphysical. In the language of waves, the helicity
of electromagnetic waves is either +1 or −1. In the language of photons, we then state that
the photon is a particle with spin 1 but only two polarisation states exist, with Jz= ± 1.

Let us now turn to consider the polarisation states of the gravitational wave (9.20). The
states εμν transform not as a vector but as a second rank tensor (since there are two indices)
under rotations, so (9.24) becomes replaced by

εi k
0 ¼ Rim Rkn emn: (9:26)

Then with the only non-zero components being ε11 =− ε22 and ε12 = ε21 we have
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ε11
0 ¼ R1m R1n εmn ¼ ðcos2θÞ ε11 þ ð2 sin θ cos θÞ ε12 þ ðsin2θÞ ε22
¼ ðcos2θ � sin2θÞ ε11 þ ð2 sin θ cos θÞ ε12;

ε12
0 ¼ R1m R2n εmn ¼ �ð2 sin θ cos θÞ ε11 þ ðcos2θ � sin2θÞ ε12;

giving

ε11
0 � i ε120 ¼ e2i θðε11 � i ε12Þ; (9:27)

a state with helicity h = 2. Similarly ε11 + i ε12 has helicity h=−2. The two states of polar-
isation of the gravitational wave have helicity ±2. In the language of gravitons, the graviton
is a particle with spin 2, but only the two states ε11 ± iε12 exist, with Jz= ±2.

This analysis completes the parallels between the photon and the (putative) graviton, and
serves as a justification for the statement that the graviton is a particle with spin 2, just as the
photon is a particle with spin 1. For the sake of rigour, however, it should be remarked that as
far as quantum theory is concerned the analysis above is faulty. The reason is deep and the
argument is not particularly easy. It derives from the seminal paper by Wigner2 in which he
analysed the definition of spin from a relativistic standpoint. As stated above, spin, as
originally introduced into quantum theory, is described by the rotation group SO(3) (or SU
(2)) and this works well for the treatment of electrons in atoms, in the non-relativistic
regime. In extending these considerations to the (special) relativistic regime, Wigner
realised that the rotation group (describing the invariance of the laws of physics under
rotations) had to be enlarged not only to the homogeneous Lorentz group (describing the
invariance of the laws of physics also under Lorentz transformations) but actually to the
inhomogeneous Lorentz group, which includes invariance under space and time trans-
lations. The generators of these translations are essentially the 4-momentum operators Pμ,
and one then defines states according to the value of P μPμ. According to whether this is >0,
=0 or <0, the states are spacelike, null or timelike. The truly surprising feature of Wigner’s
analysis, however, is that his definition of spin depends on the translation operators P μ, and
it turns out that it is only for timelike states that spin is characterised by operators obeying
the Lie algebra of O(3), the rotation group. In particular, when P μPμ= 0, in other words for
massless particles – like the photon and graviton – spin is not described by the rotation group
at all, but by the Euclidean group in the plane, which is a non-compact group. This is
presumably why it is only the two states Jz= ±J that exist for photons and gravitons. The
analysis above is therefore faulty – or at least inadequate.

9.1.2 The effect of gravitational waves

We now ask what happens when a gravitational wave strikes matter. Without loss of
generality we continue to confine our attention to a wave travelling in the z direction.
Consider first the case in which h12 = 0 (Equation (9.19)). Then, in this region of space-time

ds2 ¼ �c2 dt2 þ f1þ h11ðct � zÞgdx2 þ f1� h11ðct � zÞgdy2 þ dz2: (9:28)

2 Wigner (1939).

315 9.1 Weak field approximation



The function h11(ct – z) is an oscillating function, sometimes positive and sometimes negative.
Consider some particles arranged round a circle in the xy plane, and hit by a wave with, at some
instant, h11 > 0. Then two particles with the same y coordinate have a spatial separation

ds2 ¼ ð1þ h11Þ dx2

and will therefore move apart, whereas two particles with the same x coordinate have a
separation

ds2 ¼ ð1� h11Þdy2

and will therefore move closer together. Particles at intermediate points on the circle will move
in an intermediate way, so the circle defined by the particles will become ‘squashed’ as shown in
the first part of Fig. 9.1. After a short time h11 returns to zero and the circle is restored, after
which h11 becomes negative and the circle becomes elongated, again later returning to a circular
shape. Thus the collection of particles oscillates as shown in the figure. This is clearly a
transverse motion, and the wave (represented by h11 here) is said to have a + polarisation.

Now consider a wave with h11 = 0 − an h12 wave. The invariant line element is clearly

ds2 ¼ �c2 dt2 þ dx2 þ 2h12 dx dyþ dy2 þ dz2: (9:29)

To see what motion this induces in our circular array of particles in the xy plane, it is easiest
to rotate through 45° to new axes in the plane:

~x ¼ x cos 45� þ y sin 45� ¼ 1ffiffi
2

p ðxþ yÞ;
~y ¼ �x sin 45� þ y cos 45� ¼ 1ffiffi

2
p ð�xþ yÞ:

Then dx2 þ dy2 ¼ d~x2 þ d~y2 and 2dx dy ¼ d~x2 � d~y2 and (9.29) becomes

ds2 ¼ �c2 dt2 þ ð1þ h12Þd~x2 þ ð1� h12Þd~y2 þ dz2; (9:30)

which is of the same form as (9.28), and therefore corresponds to an oscillatory motion of the
same type, but with respect to rotated axes, as shown in Fig. 9.2. This is therefore also a
transverse wave, and is said to be of polarisation type×. In this notation (9.19)may bewritten as

hμν ¼
0 0 0 0
0 hþ h� 0
0 h� �hþ 0
0 0 0 0

0
BB@

1
CCA:

Fig. 9.1 Oscillatory motion of a circle of particles hit by a gravitational wave with polarisation +.
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9.2 Radiation from a rotating binary source

The quantity hμν is the amplitude of the gravitational wave produced by the motion of a
source, and the source is characterised by the energy-momentum tensor Tμν. The expression
(9.19) for hμν has the property h μ

μ ¼ 0, so from (6.10) and (6.11) hμν= fμν and it then follows
from (6.22) that

hμ vðr; tÞ ¼ 1

4π
� 16πG

c2

ð
1

r � r0j j Tμ v
�
r0; t � r � r0j j

c

�
d3x0;

which gives the relation between hμν and Tμν. In the long distance approximation r>> r 0 (see
Fig. 9.3) so we may put

hμ vðr; tÞ 	 4G

c2
1

r

ð
Tμ νðr0; trÞd3x0; (9:31)

where tr ¼ t � r

c
is the reduced time. Since we are concerned with weak gravitational fields

and slowly moving sources we may assume that Tμν obeys the flat space conservation law

Tμ ν
;ν ¼ 0: (9:32)

Putting μ= 0 and differentiating with respect to x0 then gives

T 00
;00 ¼ � ∂

∂x0
∂T0i

∂xi

� �
¼ � ∂

∂xi
∂T0i

∂x0

� �
¼ �T0i

;0i: (9:33)

Putting μ= k in (9.32) gives

Tk 0
;0 þ Tk i

;i ¼ 0;

and this together with (9.33) yields

T00
;00 ¼ Ti k

;i k : (9:34)

Now multiply both sides of this equation by xmxn and integrate by parts over all space. The
right hand side givesð

∂2Tik

∂xi ∂xk
xmxn d3x ¼ ∂Tik

∂xi
xmxnj� �

ð
∂Tik

∂xi
ðδmkx

n þ δnkx
mÞd3x:

Fig. 9.2 Oscillatory motion induced by a gravitational wave with polarisation ×.
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The surface term vanishes for a bounded system and we then integrate by parts once more,
again ignoring surface terms, finishing up with

2

ð
Tmn d3x;

so (9.34) gives

1

c2
∂2

∂t2

ð
T00xmxn d3x ¼ 2

ð
Tmn d3x;

which, when substituted in (9.31) gives

hmnðr; tÞ ¼ 2G

c4r

∂2

∂t2

ð
T 00xmxn d3x:

In the non-relativistic (low velocity) limit T00 is dominated by the mass density ρ, so we have
finally

hmnðr; tÞ ¼ 2G

c4r
€I mn ðtrÞ (9:35)

where tr ¼ t � r

c
and

I m n ðtÞ ¼
ð
ρðt; xÞ xmxn d3x: (9:36)

This is known as the quadrupole formula, since I mn is the second moment (quadrupole
moment) of the mass distribution of the source. We should note that although we have used
the non-relativistic approximation above, it is a good one for our purposes. Let us now
calculate I mn for a binary system.

Suppose that the system consists of two (neutron) stars of approximately the same mass,
so in orbiting their common centre of mass they trace out the same circle (Fig. 9.4). The

O

r '

r
P

r – r '

Fig. 9.3 A gravitational wave produced by a localised source and detected at P. In the long distance

approximation r >> r 0.

Fig. 9.4 Two stars of equal mass in orbit around their common centre of mass.
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frequency of the gravitational waves emitted is twice the orbiting frequency, since after one-
half of the period the masses are simply interchanged, which is indistinguishable from the
starting configuration. If each star has a mass M and the radius of the orbit is R then by
simple Newtonian mechanics the frequency of the orbital motion is

ω ¼ 2π
τ
¼ ν

R
¼ GM

4R3

� �1=2

: (9:37)

At time t the two stars are at the positions

ðx; y; zÞ ¼ ðR cosωt; R sinωt; 0Þ and ð�R cosωt; �R sinωt; 0Þ
so

ImnðtÞ ¼ 2MxmðtÞ x nðtÞ;
for example

Ix x ¼ 2MR2 cos 2ωt ¼ MR2ð1 þ cos 2ωtÞ:
The components of the second moment Imn are then

Im nðtÞ ¼ MR 2
1þ cos 2ωt sin 2ωt 0
sin 2ωt 1� cos 2ωt 0

0 0 0

0
@

1
A

and hence

€I mnðtÞ ¼ �4ω2MR 2
cos 2ωt sin 2ωt 0
sin 2ωt � cos 2ωt 0

0 0 0

0
@

1
A (9:38)

and finally, from (9.36), ignoring the overall minus sign and restoring the formula to a
4× 4 form

hμνðt; rÞ ¼ 8MGR2ω2

c4r

0 0 0 0
0 cos 2ωtr sin 2ωtr 0
0 sin 2ωtr � cos 2ωtr 0
0 0 0 0

0
BB@

1
CCA: (9:39)

This is the expression for the gravitational field induced by orbiting stars a distance r away. It
is seen, as anticipated above, that the frequency of the oscillating gravitational field is 2ω,
twice the frequency of the orbiting motion.

It is also seen that hμν is of the TT form (9.19) above, so it follows that this form for hμν

already describes radiation emitted in the z direction; it does not, however, describe radiation
emitted in the x direction, which would have to be of the form (9.21). In particular we need
h11 = h12 = 0, so only h22 would remain, and the matrix, while transverse, would not then be
traceless. This must be rectified, which is not difficult to do: any matrix may be decomposed
into a traceless part and a part consisting of the trace. If

M ¼ a b
c d

� �
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is a 2 × 2 matrix, then it can clearly be written as

Mik ¼ ½Mik � 1=2ðtrMÞδik 
 þ 1=2ðtrMÞδik ;
or

M ¼
a� d
2

b

c � a� d
2

0
@

1
Aþ

aþ d
2

0

0 aþ d
2

0
@

1
A:

The first of these matrices is traceless, so in our context will contribute to the gravitational
field, whereas the second one does not. We then deduce that the gravitational field corre-
sponding to radiation emitted in the x direction is

hμ νðt; rÞ ¼ 4MGR2ω2

c4r

0 0 0 0
0 0 0 0
0 0 cos 2ωtr 0
0 0 0 � cos 2ωtr

0
BB@

1
CCA: (9:40)

The expression (9.39) for hμν contains both diagonal and off-diagonal terms, whereas the
version above has only diagonal terms. These terms correspond to the different types of
polarisation, denoted h+ and h× above.

9.2.1 Flux

Supposing that the plane of the rotating binary system is the xy plane (Fig. 9.5), let us now
calculate the energy flux received from this system, in both the z and in the x directions. This
can be done by calculating the energy density in the gravitational field, τ00, either from
(8.50), or from the field equations

G00 ¼ R00 � 1

2
g00 R ¼ 8πG

c2
τ00: (9:41)

We choose the second option, though the two calculations are very similar. Themetric tensor
is of course

gμν ¼ ημν þ hμ ν;

and the calculations will be kept to lowest order in h; so, for example,

x

y

z

Fig. 9.5 Orbiting stars in the xy plane. Radiation is emitted in all directions, but not with equal strength.

320 Gravitational radiation



G0
μ v ¼ 1

2
η00ðh0μ;ν þ h0 ν;μ � hμν;0Þ ¼ 1

2
h;μν;0 þOðh2Þ:

For the sake of definiteness let us proceed with the case of radiation emitted in the z
direction. We first calculate the relevant components of the Riemann tensor. We find, for
example (after some algebra)

R1
010 ¼ � 1

2
h11; 00 � 1

4
ðh11; 0Þ 2 � 1

4
ðh12 ; 0Þ2;

R2
020 ¼ 1

2
h11; 00 � 1

4
ðh11; 0Þ 2 � 1

4
ðh12 ; 0Þ2;

R 3
030 ¼ 0;

so that

R00 ¼ R1
010 þ R2

020 ¼ � 1

2
h11;0
� �2 þ h12 ; 0

� �2h i
:

In a similar way we find that R11 =R22 =R33 =−R00, and hence, always working to lowest
order in h, the curvature scalar R is

R ¼ η μ ν R μ ν ¼ �R 00 þ R 11 þ R 22 þ R 33 ¼ 2 ½ðh11 ; 0Þ2 þ ðh12 ; 0Þ2
: (9:42)

The field equation (9.41) then gives

τ 00 ¼ c2

16πG
½ðh11; 0Þ2 þ ðh12 ; 0Þ2
; (9:43)

which may equivalently be written as

τ 00 ¼ c2

32πG
hi j ; 0 h

i j
;0 : (9:44)

This is the energy density in the gravitational field. The flux is the amount of energy received
per unit area per unit time in a particular direction, which is cτ00. Substituting for h11 and h22
in (9.39) we find that the flux emitted in the z direction is

Fz ¼ c3

16πG
� 64M

2G2R4ω4

c8r2
� 4ω4 ¼ 16G

πc5
M 2R4 ω

6

r2
: (9:45)

In the case of radiation emitted in the x direction the corresponding formula, containing the
term (h22,0)

2 + (h33,0)
2, will contain a factor cos22ωt, which clearly oscillates in time, so we

should only take the average value of this, which is ½. We then find, for the flux in the x
direction

Fx ¼ 2G

πc5
M 2R4 ω6

r2
: (9:46)

We see that far more energy is emitted in the z direction than the x direction, which is
hardly surprising, given the nature of the source. The pattern of energy emission is very
anisotropic.
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9.2.2 Radiated energy

Since the binary system emits radiation it will clearly lose energy, and this must have
observable consequences. We should therefore calculate the total rate of energy emission,
but because the emission is not isotropic, the calculation is not entirely straightforward.

We begin by gathering together some relevant formulae. The energy density in the
gravitational field at any point is, from (9.44) and (9.35)

τ00 ¼ G

8πc6r2
€_I i j €_I i j: (9:47)

It depends on the (square of the) third time derivative of the quadrupole moment. We also
require, however, that hij, and therefore Iij (from (9.35)), should be of the TT form. We saw
above that for a binary system the form of hij relevant to emission in the z direction, given by
(9.39), is already in the TT form (9.19), but that describing emission in the x direction had to
be put in the TT form ‘by hand’, ending up with Equation (9.40). Since we now have to
integrate over all directions we must incorporate a mathematical procedure which will
guarantee that hij (equivalently Iij) retains a TT form. We may introduce an initial simpli-
fication by starting off with Iij already in traceless form, which is done simply by subtracting
a multiple of the unit matrix times the trace, as was done above Equation (9.40). That is, we
shall assume that

Ii i ¼ 0: (9:48)

Our aim is to calculate the rate of energy loss through a spherical surface of large radius,
centred on the radiating source. The flux of radiation is then perpendicular to the surface. To
project out the components of Iij that are transverse to the direction of flow of the energy
therefore means projecting out the components in the tangent plane to the surface of the
sphere (and neglecting the others). Let n be the unit normal to the surface at any point, and
let v be some arbitary vector. The projection operator Pij

Pi j ¼ δi j � ni nj (9:49)

projects out the component of v which is orthogonal to n, i.e. in the tangent plane of the
surface. We have

Pi j νj ¼ vj � ni ðv:nÞ
and hence

ðP vÞ : n ¼ ðPi j νjÞni ¼ v : n � ðn : nÞðv : nÞ ¼ 0;

as required; (Pij vj ) is orthogonal to n. Note that

Pi j Pjm ¼ Pim; (9:50)

as expected for projection operators. Now let us upgrade our discussion from vectors
vi to rank 2 tensors Mij (which can also be considered as matrix elements). It is easy to
see that
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Nkl ¼ Pik Pjl Mij (9:51)

is transverse:

Nkl n k ¼ Nkl nl ¼ 0; (9:52)

since

Nkl nl ¼ ðδik � ninkÞðδjl � njnlÞMijnl ¼ ðδik � ninkÞðnj � nj ðn � nÞÞMij ¼ 0;

but it is not traceless:

Nk k ¼ Pik Pjk Mij ¼ Pij Mij ¼ Pji Mij ¼ trðPMÞ;
where we have used (9.50) and the fact that Pij = Pji. However, the tensor (matrix)

Rkl ¼
�
PikPjl � 1

2
PklPij

�
Mij (9:53)

is traceless:

Rkk ¼ ðPikPkj � 1=2PkkPijÞMij ¼
�
1� 1

2
Pkk

�
PijMij;

but Pkk = δkk − nknk= 3− 1 = 2, so

Rkk ¼ 0: (9:54)

R is then the transverse and traceless version of M:

R ¼ MTT ¼ PMP � 1

2
PðtrPMÞ (9:55)

or

MTT
i j ¼

�
PikPjl � 1

2
PijPkl

�
Mkl: (9:56)

This completes the mathematics we need to find hTTij at any point. Equation (9.47) will be
amended to

τ00 ¼ G

8πc6r2
€_I
TT
ij€_I

TT
ij; (9:57)

with

ITTi j ¼
�
Pik Pjl � 1

2
Pij Pkl

�
Ikl: (9:58)

To evaluate (9.57) observe that

ITTij I
TT

ij ¼
�
PikPjl � 1

2
Pij Pkl

��
Pip Pjq � 1

2
Pij Ppq

�
Ikl Ipq

¼ ðPik Pjl IklÞðPip Pjq IpqÞ � ðPik Pjl IklÞðPij Ppq IpqÞ
þ 1

4
Pij Pij ðPkl IklÞðPpq IpqÞ: (9:59)

There are three terms on the right hand side of this equation. After some algebra it is seen that
the first one is equal to

Iij Iij � 2 np np Iip Iiq þ ni nj np nq Ii j Ipq;
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and the second and third terms are, respectively

� nk nl np nq Ikl Ipq and þ 1

2
nk nl np nq Ikl Ipq;

giving, finally,

ITTij I
TT

ij ¼ Iij Iij � 2np nq Ii p Iiq þ 1

2
nk nl np nq Ikl Ipq: (9:60)

We have, then, that from (9.57) the gravitational energy density is

τ00 ¼ G

8πc6r2
€_I TT

ij €_I
TT

ij

	 

(9:61)

where the ‘averaging’ sign is put in to deal with possible oscillating terms; and the energy
passing through a spherical surface of radius r in unit time is

dE
dt

¼
ð
cτ 00 r

2 dΩ ¼ G

8πc5

ð
€_I TT

ij €_I
TT

ij

	 

dΩ: (9:62)

The integral above is, from (9.60)ð
€_I TT

ij €_I
TT
ij dΩ ¼

ð �
€_I ij €_I ij � 2 np nq €_I ip €_I iq þ 1

2
nk nl np nq€_Ikl €_Ipq

�
dΩ: (9:63)

The factors €_I i j and so on come outside the integral sign. The remaining angular integrals areð
dΩ ¼ 4π ;

ð
ni nj dΩ ¼ 4π

3
δi j;ð

ni nj nk nl dΩ ¼ 4π
15

ðδij δkl þ δik δjl þ δil δjkÞ:
(9:64)

These are easily seen: for putting n1 ¼ x̂ ¼ sin θ cos�, n2 ¼ ŷ ¼ sin θ sin�, n3 ¼ ẑ ¼ cos θ
and dΩ= sinθ dθ d�, it is simple to check thatð

n1 n2 dΩ ¼ 0;

ð
n21dΩ ¼ 4π

3
;

ð
n21 n

2
2 dΩ ¼ 4π

15
;

and so on. Hence (9.63) gives (noting (9.48))ð
€_I
TT
ij €_I

TT
ij

D E
dΩ ¼ €_I ij €_I ij

	 

4π � 2 � 4π

3
þ 1

2

4π
15

� 2
� �

¼ €_I ij €_I ij
	 
 24π

15
;

and, finally, the rate of energy loss is

dE
dt

¼ G

5c5
€_I ij €_I ij

	 

: (9:65)

Returning to our orbiting binary, from (9.38)

€_I ij ¼ 8MR2ω3
sin 2ωt � cos 2ωt 0

� cos 2ωt � sin 2ωt 0
0 0 0

0
@

1
A;

hence €_I i j €_I i j = 128M
2R4ω6 and
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dE
dt

¼ 128G

5c5
M 2R4ω6: (9:66)

Substituting further from (9.37) for ω, the frequency of rotation, gives

dE
dt

¼ 2G4

5c5
M 5

R5
: (9:67)

This is an expression for the gravitational luminosity of the source: we may write it as

L ¼ 2

5

GM

Rc2

� �5c5
G
: (9:68)

The quantity (GM/Rc2) is dimensionless and (c5/G) has the dimensions of luminosity. Note
that L depends on 1/R5, so most energy is emitted from compact binaries (R is the radius of
the binary system).

9.2.3 Spin-up and the binary pulsar PSR 1913+16

The total kinetic energy of the binary system is

T ¼ 2� 1

2
Mν2 ¼ GM2

4R
;

from (9.37). The potential energy is V ¼ �GM2

2R
(since the distance between the bodies

is 2R) so the total energy of the binary system, including rest masses, is

E ¼ GM2

4R
� GM2

2R
þ 2Mc2 ¼ 2Mc2 � GM 2

4R
: (9:69)

As the system emits energy E must decrease, so R must also decrease (assuming M is
unaffected) and the orbit will shrink; the system ‘spins up’ and eventually the stars coalesce.
The frequency of the emitted radiation is f= 2ω/2π, which from (9.37) is

f ¼ 1

π
GM

4R3

� �1=2

: (9:70)

As R decreases the pitch of the radiation increases, and the signal is known as a chirp, the
song of a sparrow.

Let us make a crude estimate of the characteristic time for the radius of the orbit to shrink
from R to R/2. From above it is clear that an amount of energy GM2/4R will have been
emitted, and ifwe assume that the luminosity L is constant during this time, the characteristic
time tch would be

Ltch ¼ GM 2

4R
;

giving, from (9.68),
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tch ¼ 5R

8c

GM

R c2

� ��3

: (9:71)

This is the chirp time for the binary. The factor 5R/8c is the time taken for light to travel a
distance 5R/8 and the second factor is dimensionless. It must be admitted that this is a rather
crude estimate, but note that because of the 1/R5 dependence of the luminosity, the time
taken for a further decrease in radius, say from R/2 to R/4, is very much less, so the chirp time
is actually not a bad order-of-magnitude estimate for the time taken for the stars to coalesce.

Now let us be more specific, and consider a system where both stars are neutron stars,

M ¼ 1:4MS; R ¼ 106 km: (9:72)

Then MG/Rc2 = 2.06 × 10−6 and

tch¼ 2:2 � 10 17 s 	 7:1 � 109 years;

comparable to the age of the Universe! This is hardly measurable, but an interesting and
measurable quantity is the change in the period of an orbit, as a result of its shrinking. The
period is, from (9.37),

τ ¼ 4π
R3

GM

� �1=2
/ R3=2:

As R changes τ will also change, and from above

dτ
τ
¼ 3

2

dR
R

: (9:73)

From (9.69) we have dE/E=− dR/R, so

dτ
τ
¼ � 3

2

dE
E

:

We want to find dτ/dt, the rate of change of the period. From the above equations we find

dτ=dt
τ

¼ � 3

2

dE=dt
E

¼ � 3

2

L

E
¼ � 12

5

G3M 3

R4c5
;

hence

dτ
τ
¼ � 48π

5

GM

Rc2

� �5=2
: (9:74)

With MG/Rc2 = 2.06× 10−6 this gives

dτ
dt

¼ �1:84� 10�13;

the period of the orbit decreases by 1.84 × 10−13 seconds every second. This is a dramatic
prediction of General Relativity, coming about as a consequence of the emission of gravita-
tional radiation from the binary system.
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This prediction was verified in 1974 by Russell Hulse and Joseph Taylor who observed
the decrease in the period of the pulsar PSR 1913+16 in a binary system like the one
considered above: both the pulsar and its companion have masses close to 1.4MS.

3 The
orbits are tight but eccentric: the semi-major axis is about 9× 108m and the eccentricity of
the ellipse is 0.62; the formula (9.74) has to be corrected for this. Hulse and Taylor took
measurements over many years and concluded that

dτ
dt

¼ �2:422� 0:006ð Þ � 10�12;

in agreement with the general relativistic prediction to an accuracy of better than 0.3%. We
may thus conclude that we have definite – though indirect – evidence for the existence of
gravitational radiation.

9.2.4 Search for gravitational waves

The search for gravitational waves actually has a long history, going back to the pioneering
experiments of Weber in the 1960s. These experiments, which in a modified form are still
being pursued by many research groups today, consist of a large metal cylinder which, when
hit by a gravitational wave, will oscillate, and the oscillations are converted by transducers
into electrical signals. Modern versions of this experiment may achieve sensitivities of the
order of 10−18. To put this figure into context, let us calculate the amplitude of the signal
from PSR 1913+16. Equations (9.37) and (9.39) give

h ¼ 2G2M 2

c4rR

and withM= 1.4MS, R = 109m and r, the distance away of the source, equal to 8 kpc = 2.5×
1020m, we have h = 3.4× 10−23, many orders of magnitude down on 10−18! An apparatus
of this type would only be able to register signals from much more powerful emitters than
this binary pulsar – and of course there are more powerful sources. Even with a sensitivity of
10−18, however, in a bar of length (say) 10m, we would be looking for a change in length of
10−17m – one hundredth the size of a nucleus! Gravitational wave detection certainly offers
an experimental challenge.

More recently a lot of effort is being put into interferometric methods of finding gravita-
tional waves. These experimeents are basically of the same design as a Michelson interfer-
ometer. Mirrors are placed along perpendicular arms and when a gravitational wave
impinges one of the arms contracts while the other expands, followed a short time later by
the opposite motion. Thus what is looked for is an oscillation in the path difference and
therefore the interference pattern. Some of these experiments are earthbound but the most
interesting of them are planned to be set up in space. The LISA (Large Interferometric Space
Antenna) project will consist of three spacecraft about 5× 106 km apart. The expectation is
that sensitivities of about 10−22 might be achieved in this type of experiment and there is

3 Hulse & Taylor (1975); see also Weissberg & Taylor (1984).
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considerable optimism that, in the words of Bradaschia and Desalvo,4 the gravitational wave
community is poised to prove Einstein right and wrong: right in his prediction that gravita-
tional waves exist, wrong in his prediction that we will never be able to detect them.

9.3 Parallels between electrodynamics and General
Relativity: Petrov classification

In considering the question whether gravitational radiation exists, much of our thinking has
been guided by the case of electromagnetism. Maxwell’s equations give rise to a wave
equation whose solutions describe waves carrying energy. Correspondingly, in the linear
(weak field) approximation of General Relativity, where the metric tensor differs from its
Minkowski value by the small quantity hμν, we saw that this field also obeys a wave
equation; and that these waves also carry energy. In the last section we considered convinc-
ing, though indirect, evidence that gravitational waves exist, so it might be thought that all
that remains is to discover them directly, but this is not true. Even if gravitational waves are
found conclusively to exist experimentally, we still need to have a proper theoretical
understanding of them – and the weak field approximation does not provide this. In the
first place it is linear, whereas General Relativity in its complete version is non-linear. In this
complete version there is a graviton–graviton coupling, but there is no analogous photon–
photon coupling in quantum electrodynamics. The weak field approximation, however,
is linear so the obvious question must be asked: what is the status of this approximation?
On iteration, does it yield General Relativity, and if it does, how does the non-linearity enter?
Is the iteration even convergent? To my knowledge, these questions are not yet satisfactorily
answered.

9.3.1 A geometric approach to electrodynamics

Reflections such as these encourage us to look at the question of gravitational radiation in a
different way, but still bearing in mind the model of electrodynamics. Consider, for example,
two types of electromagnetic field, the Coulomb field and the radiation field, in which the
electric and magnetic components have the following behaviour:

Coulomb field : E � 1

r2
; B ¼ 0;

Planewave ðradiationÞ : E � 1

r
; Ej j ¼ Bj j; E :B ¼ 0:

(9:75)

The Coulomb field is quasi-static and carries no energy but the radiation field carries
energy – it has a non-vanishing Poynting vector. What we want to show is that these

4 Bradaschia & Desalvo (2007).
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cases correspond to a classification of the field tensor Fμν into distinct categories – and then
to show that a similar situation exists for the gravitational field and the Riemann tensor.

From the tensor Fμν and its dual ~Fμν we may form the Lorentz invariant quantities (see
Section 2.6)

P ¼ 1

2
Fμ ν F

μ ν ¼ � Ej j2þ Bj j2;

Q ¼ 1

2
Fμ ν ~F

μ ν ¼ �E:B:
(9:76)

Electromagnetic fields with P=Q = 0 are called null fields. The field of a Coulomb (electric)
charge has P < 0,Q = 0, so is not null. The field of a single magnetic charge is also Coulomb-
like, but in this case it is purely magnetic and P > 0, Q = 0. In summary

Field of a point charge : P 6¼ 0; Q ¼ 0;

purely electric;P50; purelymagnetic;P4 0:
(9:77)

On the other hand, a plane wave travelling in the direction k has

E ¼ E0 exp½iðk : x� ωtÞ
; B ¼ c

ω
k� E ¼ c

ω
k� E0 exp½iðk : x� ωtÞ
:

In a vacuum ∇ · E = 0 so k · E = 0 and

k� E0j j2¼ k2E0
2 � ðk :E0Þ2 ¼ k2E0

2

so

Bj j2¼ c2k2

ω2
E0

2 ¼ E0
2 ¼ Ej j2) Fμν F

μν ¼ 0;

and in addition

E �B ¼ c

ω
E : ðk� EÞ ¼ 0 ) Fμν ~Fμν ¼ 0:

We therefore have P=Q = 0, a null field:

Planewave : P ¼ 0; Q ¼ 0 : null field: (9:78)

We have thus characterised the fields of a point charge and radiation algebraically. The next
step is to characterise them in the form of an eigenvalue problem. This will enable us to make
the comparison with gravitational fields.5

The eigenvalue problem takes the form

Fμ ν k
ν ¼ λ kμ; (9:79)

kμ is the eigenvector and λ the eigenvalue of Fμν. For the next part of the argument we give
Fμν – an antisymmetric rank 2 tensor – a purely algebraic and geometric interpretation.6 We
describe it as a bivector – an object constructed from two vectors. A bivector is simple if it
can be written as

5 Much of the following mirrors the work of Frolov (1979).
6 For a more complete version of the argument that follows see Frolov (1979).
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Fμ ν ¼ a½μbν
 ¼ 1

2
ðaμbν � aνbμÞ: (9:80)

In general Fμν is not simple, but it can always be decomposed into a pair of simple bivectors:

Fμν ¼ a½μbν
 þ c½μdν
: (9:81)

It can be shown7 that a bivector is simple if and only if

Fμ½νF� λ
 ¼ 0: (9:82)

From the definition

Fμν ~F
μν ¼ 1

2
εμν�λ Fμν F�λ;

it is clear that the right hand side is totally antisymmetric in all its indices so (9.82)
implies that

Fμν ~F
μν ¼ 0: (9:83)

We now introduce an important transformation, the dual rotation:

Fμν ! FμνðθÞ ¼ cos θFμν þ sin θ ~Fμν: (9:84)

It is actually a transformation which mixes electric and magnetic fields; for example with
(μν) = (10), Ex → Ex cos θ +Bx sin θ. Since ~~Fμv ¼ �Fμv we have

~FμνðθÞ ¼ cos θ ~Fμν � sin θ Fμν;

so

FμνðθÞ ~FμνðθÞ ¼ cos 2θ Fμν ~F
μν � sin 2θ Fμν F

μν (9:85a)

and

Fμ νðθÞFμ νðθÞ ¼ cos 2θ Fμ ν F
μ ν þ sin 2θ Fμ ν ~F

μ ν: (9:85b)

From (9.85a) it follows that, given an arbitary Fμν there exists a θ such that Fμν (θ) ~Fμv(θ) = 0,
so Fμν is simple (by (9.82) and (9.83)). Then by a duality rotation any Fμν may be converted
into the form (9.80)

Fμ νðθÞ ¼ a½μbν
; (9:86)

and since Fμν(θ) ~F
μν(θ) = 0, ~Fμν(θ) is also simple,

~Fμ νðθÞ ¼ c½μdν
: (9:87)

From here on we write Fμν(θ) simply as Fμν and ~Fμv(θ) simply as ~Fμv. Equation (9.86) tells us
that the bivector Fμν defines a plane Π(a, b) and similarly ~Fμv defines a plane Π(c, d). And
since ~Fμv ¼ 1

2 εμv�λa
½�bλ
, the plane Π(a, b) is orthogonal to the plane Π(c, d).

7 Schouten (1954).
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With these geometric considerations in mind we now examine more closely the cases
Fμν F

μν= 0 and Fμν F
μν≠ 0 (corresponding to radiation and Coulomb-type fields). Consider

the following:

Proposition: If Fμν is a simple bivector there exists a pair of vectors pμ, qμ such that

Fμ ν ¼ p½μqν
; pμqμ ¼ 0; (9:88)

in other words, pμ and qμ are orthogonal.

Proof: If Fμν is simple then we can write Fμν= a[μbν], from (9.86), so we have only to
find pμ, qμ such that pμqμ = 0.

Case (i): if aμa
μ ≠ 0, choose

pμ ¼ aμ; qμ ¼ bμ � ða�a�Þ
ðaλaλÞ aμ

so that

pμq
μ ¼ aμb

μ � ða�a�Þ
ðaλaλÞ aμb

μ ¼ 0;

and clearly

p½μqν
 ¼ a½μbν
;

(since a[ μaν] = 0).
Case (ii): if bμb

μ≠ 0, interchange a and b above.
Case (iii): if aμ and bμ are both null, aμa

μ = bμb
μ= 0, then choose

pμ ¼ 1ffiffiffi
2

p ðaμ � bμÞ; qμ ¼ 1ffiffiffi
2

p ðaμ þ bμÞ;

so that

p½μqν
 ¼ 1

2
ða� bÞ½μðaþ bÞν
 ¼

1

2
fa½μbν
 � bμaν
g ¼ a½μbν


and

pμq
μ ¼ 1

2
ðaμ � bμÞða μ þ b μÞ ¼ 1

2
ðaμa μ � bμb

μÞ ¼ 0: □

If the simple bivector is represented in the canonical form (9.88), then

FμνF
μν ¼ 1

4
ðpμqν � pνqμÞðp μqν � pνq μÞ ¼ 1

2
ðpμp μÞðqμqμÞ: (9.89)

We may then consider the cases in which Fμν F
μν < 0 and Fμν F

μν= 0: in which Fμν is said to
be timelike or null. From the mathematical point of view we should also consider the case
Fμν F

μν> 0, but for our present purposes that is of no physical interest.
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Case I: Fμν F
μν <0 Then from (9.89) one of the vectors (say pμ) must be timelike and

the other spacelike. In the plane Π(p, q), however, there must exist a pair of vectors, lμ and
nμ, with

Fμν ¼ lμnν � lνnμ; (9:90)

such that lμ and nμ are both null, but they are not orthogonal:

lμl
μ ¼ nμn

μ ¼ 0; lμn
μ ¼ α 6¼ 0; (9:91)

since then

Fμν F
μν ¼ ðlμnν � lνnμÞ ðlμnν � lνnμÞ ¼ �2α250:

Case II: Fμν F
μν=0 Then one of the vectors (say pμ) must be null and the other spacelike

(timelike and null, or two independent null vectors, are not orthogonal). In this case we may
write

Fμν ¼ lμaν � lνaμ (9:92)

with lμ null and aμ spacelike, and the two vectors orthogonal,

lμl
μ ¼ 0; aμa

μ40; lμa
μ ¼ 0: (9:93)

We now turn to the eigenvalue problem (9.79)

Fμν k
ν ¼ λkμ: (9:79)

In the case that Fμν is timelike we have, from (9.90),

ðlμnν � lνnμÞkν ¼ λkμ;

lμðn : kÞ � nμðl : kÞ ¼ λkμ;
(9:94)

so either kμ= lμ and (n · k) = λ = (n · l), i.e. λ = α, or kμ=nμ and (l · k) = (l · n) =− λ, i.e.
λ=− α. In other words, the equation

Fμν k
ν ¼ λkμ (9:79)

has two solutions

kμ ¼ lμ or nμ; with λ ¼ �ðn : lÞ: (9:95)

It clearly follows from (9.79) that

kρ Fμν k
ν ¼ λ kρkμ:

The right hand side of this equation is symmetric under ρ ↔ μ so the antisymmetric part
under this interchange vanishes:

k½ρFμ
νkν ¼ 0; (9:96)

and we recall that this equations has two solutions in the case where Fμν is timelike.
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When Fμν is null (9.79) becomes, with (9.92)

ðlμaν � lνaμÞkν ¼ λ kμ

or

lμða : kÞ � αμðl : kÞ ¼ λ kμ: (9:97)

It might be thought that this equation has two solutions, the first being kμ = lμ, in which case
the left hand side of (9.97) is

ðlμaν � lμaμÞlν ¼ lμða : lÞ � αμðl : lÞ ¼ 0

by (9.93), implying that λ = 0; and the second being kμ = aμ, in which case the left hand side
of (9.97) is

ðlμaν � lνaμÞaν ¼ lμða : aÞ � aμðl : aÞ ¼ ða : aÞ lμ;
but this is incompatible with the right hand side, so this second case is not a solution. There is
therefore only one solution to the eigenvalue problem

Fμ ν k
ν ¼ λ kμ

when Fμν is null, which is

kμ ¼ Alμ ðA ¼ constÞ; and λ¼ 0: (9:98)

We conclude that in the case P≠ 0, Q = 0, describing a Coulomb-type field, the eigen-
value equation is (9.96)

k½ρFμ
 ν kν ¼ 0 (9:99)

and this has two solutions. This is called the non-degenerate case and the field tensor is
denoted Fμν

[1,1]. On the other hand, in the case P = 0, Q = 0, the null case corresponding to a
pure radiation field, the eigenvalue equation is

Fμ ν k
ν ¼ 0: (9:100)

There is only one eigenvalue, λ = 0; this is the degenerate case and the field tensor is denoted
Fμν

[2]. The retarded field from an isolated extended source has the asymptotic (r → ∞)
behaviour

Fμ ν ¼ 1

r
Fμν

½2
 þ 1

r2
Fμν

½1;1
 þOðr�3Þ: (9:101)

9.3.2 Petrov classification

We now move on to the gravitational field, described by the Riemann tensor. The relevant
classification is the Petrov classification, which applies in the first instance to the Weyl
tensor Cλμνρ. This is closely related to the Riemann tensor and is defined as follows:
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Rλ μ ν ρ ¼ Cλ μ ν ρ � 1

2
ðgλ ρ Bμ ν þ gμ ν Bλ ρ � gλν Bμρ � gμ ρ Bλ νÞ

� 1

12
Rðgλ ρ gμ ν � gλ ν gμ ρÞ;

(9:102)

with

Bμ ν ¼ Rμ ν ¼ � 1

4
gμ ν R: (9:103)

Clearly, in a vacuum, where Rμν=R = 0,

ðin vacuoÞ Rλ μ ν ρ ¼ Cλ μ ν ρ: (9:104)

Since gμνBμν=R – ¼δμμR = 0, it is clear, multiplying (9.102) by gλν that

Rμρ ¼ gλ νCλ μ ν ρ þ Rμ ρ;

hence

gλ v Cλ μ v ρ ¼ 0: (9:105)

The Weyl tensor has the same symmetries as the Riemann tensor: from (9.102)

Cλ μ ν ρ ¼ �Cμ λ ν ρ ¼ �Cλ μ ρν ¼ þCv ρ λ μ ;

Cλ μ ν ρ þ Cλ ν ρ μ þ Cλ ρ μ ν ¼ 0;
(9:106)

so Cλμνρ, like Rλμνρ, has 10 independent components; but gλνCλμνρ is always zero, even in the
presence of matter. The classification of a tensor depends only on its symmetry properties, so
the classification of the Riemann tensor in vacuo is the same as the classification of theWeyl
tensor anywhere – even in matter.

We shall consider the matter of classification by the method of eigenvectors and eigen-
values, as we did above for the electromagnetic field tensor.8 If we have, then, a rank 2 tensor
Tij we look for a vector V j with the property

Ti j V
j ¼ λVi ¼ λ gik V

k ; (9:107)

or

Ti j � λgi j
� �

V j ¼ 0;

and the eigenvalues λ are the solutions to the equation

jTi j � λ gi jj ¼ 0: (9:108)

It is most important to note that the classification which we are about to discuss depends
crucially on the fact that we choose a locally inertial frame at any point P of space-time, at
which, therefore, the metric tensor takes on its Minkowski values

gμ v ¼ diag ð�1; 1; 1; 1Þ: (9:109)

8 Much of the material below follows the treatments of Landau & Lifshitz (1971) and Papapetrou (1974).
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It follows from this that the Petrov classification is a local one – in practice, a physical
gravitational field may change from one class to another, or a mixture of classes, as we move
from one point to another in space.

In the spirit of (9.107) we should define a rank 2 tensor related to the Weyl tensor, and we
do this by proceeding, as in Section 4.4, by making the association

Cλ μ v ρ $ CAB; A � ðλ μÞ; B � ðv ρÞ: (9:110)

The indices A, B take on the values 1, 2, …, 6 and in view of (9.106) CAB =CBA is a
symmetric tensor in a 6 dimensional space with metric tensor γAB. This must be symmetric,
and is defined by

γAB $ gλ μ v ρ � gλ v gμ ρ � gλ ρ gμ v: (9:111)

It has the same symmetries as the Weyl tensor, so in the bivector space is symmetric. The
eigenvalue equation is of the form

CAB � λγABð ÞWB ¼ 0: (9:112)

It actually corresponds to the equation

ðCλ μ v ρ � λgλ μ v ρÞWvρ ¼ 0;

where W νρ= – W ρν, but we shall find it easier to work with Equation (9.112). The corre-
spondence between the indices A, B and μν, etc., is

A μν

1 01

2 02

3 03

4 23

5 31

6 12

so, for example,

γ11 ¼ g0101 ¼ g00 g11 � g01 g01 ¼ �1;

γ44 ¼ g2323 ¼ g22 g 33 � ðg23Þ2 ¼ 1;

γ12 ¼ g0102 ¼ g00 g12 � g02 g01 ¼ 0;

and so on, giving

γAB ¼ diag ð�1;�1;�1; 1; 1; 1Þ: (9:113)
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An analogous ‘bivector’ relabelling of the Riemann andWeyl tensors may be carried out, so,
for example,

Rμ v� λ $ RAB ¼ RBA: (9:114)

Then the relation (see (4.34iv))

R0123 þ R0231 þ R0312 ¼ 0 (9:115)

becomes

R14 þ R25 þ R36 ¼ 0; (9:116)

and similarly, since the Weyl tensors has the same symmetries,

C14 þ C25 þ C36 ¼ 0: (9:117)

To proceed further (noting all the while that the symmetries of the Riemann and Weyl
tensors are the same) we nowwrite the 20 independent components of the Riemann tensor as
a collection of 3-dimensional tensors9 Mik, Nik and Pik:

Mik ¼ R0 i 0 k ; Ni k ¼ 1

2
εi m n R0 k m n; Pi k ¼ 1

4
εi m n εk p q Rmn p q; (9:118)

noting that in this 3-dimensional locally Minkowski space there is no need to distinguish
upper and lower indices. By virtue of the symmetry properties of the Riemann tensor we
have

Mik ¼ Mk i ð;6 componentsÞ; (9:119)

and

Pk i ¼ 1

4
εk m n εi p q Rmn p q ¼ 1

4
εi p q εk m n Rp qmn ¼ Pi k ð;6 componentsÞ: (9:120)

In addition

N11 ¼ 1

2
ε1mn R01mn ¼ 1

2
ðR0123 � R0132Þ ¼ R0123; N22 ¼ R0231;

N33 ¼ R0312;

hence, from (9.115),

Ni i ¼ N11 þ N22 þ N33 ¼ 0: (9:121)

Further,

N12 ¼ R0131; N13 ¼ R0112; N23 ¼ R0331; N32 ¼ R0212; (9:122)

and so on. We now make use of the vacuum field equations Rμν = 0. We have

R00 ¼ gik R0i0k ¼ R0i0i ¼ Mii;

hence

Mii ¼ 0: (9:123)

9 That is, tensors whose indices take on only the values 1, 2, 3.
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We also have

P12 ¼ 1

4
ε1mn ε2 pq Rmnpq ¼ R2331 ¼ �R3132:

On the other hand,

R12 ¼ gρσRρlσ2 ¼ R0l02 � Rili2 ¼ R0l02 � R3132 ¼ 0;

hence, from (9.118) M12 =−P12, and in general

Mik ¼ �Pi k ði 6¼ kÞ: (9:124)

In a similar way it follows from R01 = 0 that N32 = N23, and in general

Ni k ¼ Nk i: (9:125)

Finally, the equations R11 = 0, R22 = 0 and R33 = 0 give, respectively

M11 ¼ P22 þ P33; M22 ¼ P33 þ P11; M33 ¼ P11 þ P22; (9:126)

which are, on rearrangement,

P11 ¼ 1

2
M22 þM33 �M11ð Þ; P22 ¼ 1

2
M11 þM33 �M22ð Þ;

P33 ¼ 1

2
M11 þM22 �M33ð Þ;

from which, using (9.123)

Pi i ¼ 1

2
Mi i ¼ 0:

It then follows from (9.126) that M11 = – P11 and so on, so (9.124) becomes

Mik ¼ �Pi k for all i; k: (9:127)

We can now enumerate the number of independent components of these tensors. Because of
(9.127) the independent tensors are Mik and Nik. Equations (9.119) and (9.123) imply that
Mik has 6− 1 = 5 independent components, and (9.121) and (9.125) that Nik has 3 off-
diagonal and 2 diagonal independent components, making 5 in all. This gives a total of 10
independent components for the Riemann tensor, as expected when Rμν= 0.

We can now represent the components of the Riemann tensor as a 6× 6 matrix, which in
terms of Mik and Nik is

CAB ¼ M N
N �M

� �
; (9:128)

with M and N both symmetric traceless 3× 3 matrices. The eigenvalues λ of CAB are the
roots of

det ðCAB � λγABÞ ¼ 0; (9:129)

i.e.

Mik � λδi k Ni k

Ni k �Mik � λδi k


 ¼ 0: (9:130)
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There are six rows and six columns in this matrix. Perform the following operations on it:
add to the first column i times the fourth one, to the second column i times the fifth, and to
the third i times the sixth. Then add to the fourth row i times the first row, to the fifth i times
the second and to the sixth i time the third. After these operations (which of course leave the
determinant unchanged) the determinant becomes

Mik � λδi k þ i Ni k Ni k

0 �ðMik � λδi k þ iNi kÞ


 ¼ 0; (9:131)

i.e.

Mik � λδi k þ Ni kj j ¼ 0; (9:132)

involving only the determinant of a 3× 3 matrix: the second equation resulting from (9.131)
is the complex conjugate of (9.132). Equation (9.132) is cubic in λ:

λ3 þ aλ2 þ bλþ c ¼ 0;

where a, b and c are functions of Mik and Nik: in particular

a ¼ �ðMi i þ Ni iÞ ¼ 0

by virtue of (9.121) and (9.123). However, a is the sum of the roots, λ1 + λ2 + λ3, so we have

λ1 þ λ2 þ λ3 ¼ 0; (9:133)

and we recall that these roots are in general complex numbers. Any classification of theWeyl
tensor can then begin by observing that (9.133) immediately allows a simple enumeration of
three types of solution:

ðiÞ type I : 3 roots λ1 λ2; λ3 all different

ðiiÞ type II : 2 roots equal λ1 ¼ λ2 6¼ λ3
ðiiiÞ type III : 3 roots equal; so from ð9:133Þ λ1 ¼ λ2 ¼ λ3 ¼ 0:

(9:134)

When the eigenvalues are known we can find the eigenvectors WA from (9.112). At this
stage, however, we shall abandon a detailed treatment of this topic and simply quote the final
results, giving the matrices M and N in ‘normal form’ for the three types of solution above.

Type I

M ¼
α1 0 0

0 α2 0

0 0 α3

0
B@

1
CA; N ¼

β1 0 0

0 β2 0

0 0 β3

0
B@

1
CA;

λi ¼ �ðαi þ iβiÞ ði ¼ 1; 2; 3Þ:

(9:135)

Type II

M ¼
2α 0 0

0 �αþ σ 0

0 0 �α� σ

0
B@

1
CA; N ¼

2β 0 0

0 �β σ

0 σ �β

0
B@

1
CA;

λ1 ¼ �2ðαþ iβÞ; λ2 ¼ λ3 ¼ αþ iβ:

(9:136)
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Type III

M ¼
0 σ 0
σ 0 0
0 0 0

0
@

1
A; N ¼

0 0 0
0 0 σ
0 σ 0

0
@

1
A: (9:137)

Type I is clearly the most general – non-degenerate – solution and may be denoted [1, 1, 1],
following the notation of (9.101), Similarly Types II and III may be denoted [2, 1] and [3].

It turns out, however, that the above – algebraic – classification does not do full justice to
the problem. An alternative approach is to base the analysis directly on equations analogous
to (9.99) and (9.100). It is obvious that even in the degenerate case (9.100), Equation (9.99)
also holds, so we can regard the problem as looking for solutions to (9.99) and then finding
both the non-degenerate and degenerate solutions Fμν

[1 1] and Fμν
[2], corresponding respec-

tively to a Coulomb field and a radiation field, with the asymptotic behaviour (9.101). So, in
the gravitational case, substituting the Weyl tensor Cκλμν or the Riemann tensor Rκλμν (as
long as we are dealing with vacuum solutions) for the electromagnetic tensor Fμν, we
investigate all possible solutions to the equation

k½�Rλ
μ v½ρkσ
 kμkv ¼ 0; kμkμ ¼ 0; (9:138)

and it is found that there is quite a variety of solutions. In general there are four types of
Riemann tensor satisfying (9.138). In the most general case the eigenvalues are all distinct.
This is the non-degenerate case, labelled [1111] and called Type I. The other types feature
degeneracies of varying degrees and may be summarised in the following table:

Type: I D II III N

Symbol : ½1111
 ½211
 ½22
 ½31
 ½4
 (9:139)

(The notation here is, for example, [31] represents two distinct eigenvalues, one of them 3-
fold degenerate, and [211] represents three eigenvalues, one of them 2-fold degenerate.) All
the solutions satisfy (9.138). In particular Type I does and we may write

k½�Iλ
 μ ν½ρkσ
 kμ kν ¼ 0:

The types with partial or complete degeneracy also satisfy more stringent equations; for
example Type II and Type N satisfy

II� λ μ ½νkρ
 kλ kμ ¼ 0; N� λ μ νk
ν ¼ 0:

Finally, the curvature tensor of an isolated distribution of matter has the long distance expansion

R� λ μ ν ¼ 1

r
N� λ μ ν þ 1

r2
III� λ μ ν þ 1

r3
D� λ μ ν þ � � � : (9:140)

Comparing (9.140) with (9.100) it would seem clear that the tensorN corresponds to a radiative
solution to the field equations; the curvature tensor has a 1/r dependence, so the energy of the
field may be expected to show a 1/r2 dependence, indicating a genuine flux of energy.

It is worth considering, in this context, the Schwarzschild solution. Intuition would lead
us to expect that it has similar characteristics to the Coulomb solution – representing the field
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of a static mass, with, in the Newtonian limit, a 1/r2 dependence. In fact, as may be verified
from (5.34), the Riemann tensor has the non-zero components

R0101 ¼ � 2m

r3
; R0202 ¼ R0303 ¼ m

r3
; R1212 ¼ R1313 ¼ �m

r3
; R2323 ¼ 2m

r3
:

This indicates, from (9.118), that

M11 ¼ �P11 ¼ � 2m

r3
; M22 ¼ M33 ¼ �P22 ¼ �P33 ¼ m

r3
; Ni k ¼ 0

(in agreement with (9.124)), so that

Mik ¼ m

r3

�2 0 0
0 1 0
0 0 1

0
@

1
A; Ni k ¼ 0:

This therefore corresponds to Type II in (9.136) (with β = 0) – one of the eigenvalues is
degenerate. In the scheme (9.139) it is Type III, with the expected 1/r2 fall-off.

We can therefore conclude that an analysis of the Riemann tensor, satisfying Einstein’s
field equations, indicates that a radiative solution exists, independent of the weak field
approximation. It makes the question of the existence of gravitational radiation less prob-
lematic from a theoretical point of view.With hopes boosted by the evidence from the binary
pulsar, we now await the direct observation of gravitational radiation, which will surely rank
as one of the most important discoveries of the twenty-first century.

Further reading

Einstein’s papers on gravitational waves are Einstein (1916b) and (1918). Good and
relatively modern reviews of gravitational radiation are Douglass & Braginsky (1979) and
Thorne (1987). Reviews of laser interferometric searches for gravitational waves are
Kawashima (1994) and Barish (2002).

A comparison of the geometric parallels between electromagnetic and gravitational fields
may be found in Witten (1962). A full account of the Petrov classification is contained in
Petrov (1969). Good lectures on gravitational radiation theory may be found in Sachs (1964)
and Pirani (1965). Useful reviews of this topic are Pirani (1962a, b). Somewhat briefer
accounts of the geometric classification of fields may be found in Stephani (2004).

Problems

9.1 Show that the harmonic condition (6.17) f μν,ν= 0 may be expressed as

gμ νGλ
μν ¼ 0:

9.2 Taking ni= n3 = (0, 0, 1) and a 3× 3 matrix M, show that MTT defined by (9.55) is
indeed transverse and traceless.
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10 Cosmology

In the end the world will be a desert of chairs and sofas … rolling through infinity with
no-one to sit on them.

E.M. Forster, Howards End

10.1 Brief description of the Universe

Our Sun is one star in a collection of about 1011 stars forming our Galaxy. The Galaxy is
shaped roughly like a pancake – approximately circular in ‘plan’ and with thickness much
less than its radius – and the Sun is situated towards the outside of this distribution, not far
from the central plane. The Galaxy is about 100 000 light years (ly) across. Almost all the
stars visible to the naked eye at night belong to our Galaxy, and looking at the Milky Way is
looking into its central plane, where the density of stars is greatest. The Andromeda Nebula,
also visible to the naked eye, is a separate galaxy about 2 million light years away, and in fact
is a member of the Local Group of galaxies. The construction of large telescopes in the first
decades of the twentieth century led to the discovery of many galaxies and groups of
galaxies and it is now known that there are about 1011 galactic clusters in the visible
Universe. Considering these clusters as the ‘elementary’ constituents of the Universe, on
scales larger than that of the clusters their distribution in space appears to be homogeneous
and isotropic. This is the first – and very remarkable – feature of the Universe.
An important cosmological figure is the average density of matter in the Universe. The

contribution of the matter contained in galaxies is

ρb � 10�31 g cm�3 ¼ 10�28 kgm�3: (10:1)

The subscript b refers to the fact that the ‘matter’ referred to here is baryonic matter –made
of protons and neutrons. This is the sort of matter of which stars and planets and we
ourselves are made. We shall see in due course that there is matter of a different sort –
dark matter – in the Universe. The matter referred to in (10.1) is not dark; it constitutes stars,
and shines.

The discovery that the Universe is isotropic means that it has no centre – there is no
privileged point in space. The space (not space-time) of the Universe is a homogeneous
space. This is the content of the so-called Cosmological Principle (CP). An extension of this
principle is the Perfect Cosmological Principle (PCP) according to which, if it were true, the



Universe would be homogeneous in space and in time. It would look the same at all points in
space and at all times, which of course implies that it must be of infinite age, in both the past
and the future. This principle was proposed by Hermann Bondi and Thomas Gold in 1948
and came to be known as the Steady State Theory.1 It might be thought that Special
Relativity requires that the statement of homogeneity in space be extended to homogeneity
in space and time, but this is not true, since Special Relativity is a theory about the laws of
nature. It demands that the laws of nature be covariant – have the same form – under Lorentz
transformations. In doing physics we apply the laws of nature to a particular physical
situation – for example studying the motion of a charged particle in an electric field. If the
laws of nature are ultimately differential equations – and they are – the situation to which we
apply these laws (the motion of the particle) is represented by the boundary conditions of
these equations (the initial position and speed of the particle). It is indeed a most remarkable
circumstance that our knowledge can be divided into these two categories.2 In the present
case the physical system is the Universe as a whole, which therefore plays the role of a
‘boundary condition’, so the Cosmological Principle is a property of the boundary con-
ditions, not a property of any law of nature, and Special Relativity does not require that it
should be extended to a Perfect Cosmological Principle. In fact the Steady State Theory is
now discredited; in Big Bang Cosmology the Universe certainly looked very different in the
past from how it looks now!

One of the major advances in cosmology was the discovery by Edwin Hubble in the
1920s, working on the big telescopes at the Mount Wilson and Palomar Observatories, that
the Universe is expanding. This was his interpretation of the fact that the light from far
galaxies was red-shifted relative to light from nearby galaxies. Hubble interpreted the red-
shift as a Doppler shift and concluded that the galaxies are moving away – from us, and from
each other. The observed pattern of expansion was that the galaxies are moving away
radially, with a speed v proportional to their distance r from us,

v ¼ H0 r: (10:2)

The constant H0 is the present value of Hubble’s constant, sometimes called the Hubble
parameter, since it is likely that H0 varies in time. There is a degree of uncertainty in its
present value, which is

H0 ¼ ð55�85Þ km s�1 Mpc�1; (10:3)

a galaxy 1Mpc (= 3.3 ly) away is receding at a speed of around 70 km s–1. It is convenient to
write (10.3) as

H0 ¼ h � 100 km s�1 Mpc�1;

with h at present in the range 0.55 to 0.85.
There are a number of observations to make about this important discovery. Firstly, it is

not a particularly rapid expansion. Since 1Mpc = 3.09× 1019 km and 1 year = 3.15× 107 s,
then, on putting h= 1 for definiteness, a galaxy 1020 km (about 3 million ly) distant from us

1 For an account of the Steady State Theory see for example Bondi (1960).
2 These observations are taken from Wigner’s essay ‘Symmetry and conservation laws’, in Wigner (1967).
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will have receded, after 108 years, by about 1018 km – an expansion of only 1% in 100
million years. In units of inverse seconds H0 is

H0 ¼ h ð3:24� 10�18Þ s�1

whose inverse is

H�1
0 ¼ 3:09

h
� 1017 s � 1

h
� 1010 years: (10:4)

If H0 were a constant in time this figure would represent the age of the Universe – the time
that has elapsed since it had ‘zero’ size. In any case, even if Hubble’s parameter is time
dependent, its inverse should certainly bear some relation to the age of the Universe.

A second observation is that Hubble’s law (10.2) does not imply that we are at the centre
of expansion (the centre of the Universe), as initially one might be tempted to think.
Consider the expansion in one dimension. Suppose we have points M, N, P, R and S a
distance d apart from each other (see Fig. 10.1). An observer at P sees himself at rest, sees an
observer at Rmoving to the right with speed v =Hd, an observer at Smoving to the right with
speed 2v, an observer atNmoving to the left with speed v and so on. An observer at R, on the
other hand, will see herself at rest, will see S moving to the right with speed v, P moving to
the left with speed v, N to the left with speed 2v, and so on; she sees exactly the same pattern
of expansion as P does. Every observer sees the same, so there is no centre of expansion. It is
easy to generalise this to three dimensions. Suppose an observer at P sees an arbitrary galaxy
G, a distance r0 away, receding (radially) at speed v0 =Hr0, as in Fig. 10.2. What does an
observer at Q see? Q moves at velocity v1 =Hr1 with respect to P, so by vector addition of
velocities will see G, a distance r2 away, move with velocity

v2 ¼ v0 � v1 ¼ Hðr0 � r1Þ ¼ Hr2;

M

2v 2vv v

N P R S

2v v v

Fig. 10.1 Hubble expansion in one dimension: everyone sees the same pattern.

v1

r2

r0

r1

v2

v0
v1

Q

P

G

Fig. 10.2 Hubble expansion in three dimensions.
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Q sees a Hubble expansion, just as P does – everybody sees the same thing. It is clear that
Hubble’s law (10.2) is the only expansion law compatible with a homogeneous universe: if
Hubble had observed that vwere proportional to r2 then we would certainly have been at the
expansion centre, and the hypothesis of a homogeneous Universe would have been ruined.

Our third observation involves gravity. Since all the galaxies attract one another (in
Newtonian language) this will have the effect of slowing down the expansion – we would
expect to observe a deceleration in the motion of the far galaxies. It has been clear in recent
years, however, that the expansion is accelerating. We shall see, in the course of this chapter,
that General Relativity, with the Einstein field equations (5.24) also predicts a decelerating
universe. To account for an accelerating one involves introducing a ‘cosmological constant’
Λ into the field equations. We return to this below.

The fourth and final observation is slightly more subtle. It is the statement that the
expansion observed by Hubble is not to be interpreted as the motion of galaxies through a
fixed, static, space. It is, rather, the observation that the space itself is expanding, carrying
the galaxies with it. We may visualise the analogy of a balloon being inflated, as in Fig. 10.3.
If there are dots painted on the rubber surface of the balloon, then as it is inflated the dots
move further apart because they are embedded in the rubber, which is itself stretching. So,
on the cosmological scale, in General Relativity, it is the expansion of space itself which is
being manifested. After all, in Einstein’s vision, space has a reality that it never possessed in
physics before. It acquires curvaturewhen masses are placed in it; and now we learn that on
the scale of the Universe as a whole it is expanding.

10.2 Robertson–Walker metric

Our first task is to translate the Cosmological Principle, that the Universe is homogeneous
and isotropic, into an explicitly geometrical condition to be satisfied by the space-time
metric – more particularly by its space part. We use a method based on Killing vectors,
introduced in Section 6.6. It was shown there that if a space (or space-time) possesses a
particular symmetry then the Lie derivative of the Killing vector generating the symmetry
vanishes; that is, from (6.133)

gμ ν; l �
l þ gμ l �

l
;ν þ gl ν �

l
; μ ¼ 0; (10:5)

Fig. 10.3 Dots on a balloon move apart as the balloon inflates.
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where ξ λ is the relevant Killing vector. Let us first implement the requirement of isotropy –

that the metric is invariant under spatial rotations. In fact, we have already written down the
most general form of static metric with spherical symmetry, which is (5.31)

ds2 ¼ �e2νc2 dt2 þ e2l dr2 þ r2ðdθ2 þ sin2θ d�2Þ; (10:6)

where ν = ν(r), λ = λ(r); this was a preliminary step to finding the Schwarzschild solution. In
the case of cosmology there is no requirement that the metric be static; we shall proceed to
implement the requirement of isotropy only, followed by the requirement of homogeneity.
We recall from the (6.138) that the Killing vectors for rotations in space are

X4 ¼ �z
∂
∂y

þ y
∂
∂z

; X5 ¼ z
∂
∂x

� x
∂
∂z

; X6 ¼ �y
∂
∂x

þ x
∂
∂y

:

Changing notation and writing these as 4-vectors rather than 3-vectors, the Cartesian
components of the Killing vectors are

�μ1 ¼ ð0; 0;�z; yÞ; �μ2 ¼ ð0; z; 0;�xÞ; �μ3 ¼ ð0;�y; x; 0Þ: (10:7)

Then for example, transforming to spherical polars,

x1 ¼ �z
∂
∂y

þ y
∂
∂z

¼ �r cos θ sin θ sin�
∂
∂r

þ 1

r
cos θ sin�

∂
∂θ

þ 1

r

cos�
sin θ

∂
∂�

� �

þ r sin θ cos� cos θ
∂
∂r

� sin θ
∂
∂θ

� �

¼ � sin�
∂
∂θ

� cot θ cos�
∂
∂�

;

�μ1 ¼ ð0; 0;� sin�;� cot θ cos�Þ; (10:8)

where in the last line the components are in spherical polar coordinates. Similarly we find

�μ2 ¼ ð0; 0; cos�;� cot θ sin�Þ; �μ3 ¼ ð0; 0; 0; 1Þ: (10:9)

To find the metric tensor we use Killing’s equation (10.5). Applied to ξ μ3 it gives

gμ ν; 3 ¼ 0;
∂
∂�

gμ ν ¼ 0: (10:10)

Putting (μν) = (00), (10.5) applied to ξ1 gives

g 00;2ð� sin�Þ þ g00;3ð� cot θ cos�Þ ¼ 0;

g00;2 sin
2� ¼ �g00;3 cot θ cos� sin�;

and applied to ξ2 gives

g00;2 ¼ 0;
∂
∂θ

g00 ¼ 0: (10:11)

Similarly, for (μν) = (01), (11), since ξ1 and ξ2 are independent of t and r we find
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g10;2 ¼ 0; g11;2 ¼ 0: (10:12)

In the same vein, with (μν) = (22), (23), (33), (12), (13), (02), (03), the Killing vector
equation for ξ1

μ gives the seven equations

g22;2 sin� ¼ �2 g23
cos�

sin2θ
; (10:13)

ðg23;2 � g23 cot θÞ sin� ¼ �g22 þ g33
sin2θ

� �
cos�; (10:14)

ð�g33;2 þ g33 cot θÞ sin� ¼ 2g32 cos�; (10:15)

g12;2 sin� ¼ �2 g13
cos�

sin2θ
; (10:16)

ð�g13;2 þ g13 cot θÞ sin� ¼ g12 cos�; (10:17)

g02;2 sin� ¼ g03
cos�

sin2θ
; (10:18)

ðg03;2 � g03 cot θÞ sin� ¼ g02 cos�: (10:19)

To these seven equations are to be added the seven similar equations for ξ2
μ, which actually

may be found by making the substitutions sin� → − cos�, cos� → sin�; hence

g22;2 cos� ¼ 2g23
sin�

sin2θ
; (10:20)

� ðg23;2 � g23 cot θÞ cos� ¼ �g32 þ g33
sin2θ

� �
sin�; (10:21)

ðg33;2 � g33 cot θÞ cos� ¼ 2g32 sin�; (10:22)

� g12;2 cos� ¼ �2 g13
sin�

sin2θ
; (10:23)

ðg13;2 � g13 cot θÞ cos� ¼ g12 sin�; (10:24)

� g02;2 cos� ¼ g03
sin�

sin2θ
; (10:25)

� ðg03; 2 � g03 cot θÞ cos� ¼ g02 sin�: (10:26)

Gathering our results together, (10.10), (10.11) and (10.12) give

g00 ¼ g00ðt; rÞ; g01 ¼ g01ðt; rÞ; g11 ¼ g11ðt; rÞ: (10:27)
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Equations (10.13) and (10.20) give g23 = 0, g22,2 = 0, which together with (10.10) implies

g22 ¼ g22ðt; rÞ; g23 ¼ 0: (10:28)

This last condition, together with (10.14) gives

g33 ¼ g22ðt; rÞ sin2θ: (10:29)

Finally, (10.18) and (10.25) together give g03 = 0, g02,2 = 0, hence from (10.26) g02 = 0; and
(10.17) and (10.24) give g12 = 0, hence (10.23) gives g13 = 0 and we conclude that gμν has the
form

gμ ν ¼

g00ðr; tÞ g01ðr; tÞ 0 0

g10ðr; tÞ g11ðr; tÞ 0 0

0 0 g22ðr; tÞ 0

0 0 0 g22ðr; tÞ sin2θ

0
BBB@

1
CCCA; (10:30)

or

ds2 ¼� g00ðr; tÞc2 dt2 þ 2g01ðr; tÞ c dr dt þ g11ðr; tÞ dr2
þ g22ðr; tÞ ½dθ2 þ sin2θ d�2�: (10:31)

This is the most general metric for an isotropic space. On the cosmological scale, however,
space is also homogeneous. A space is homogeneous if it is isotropic about one point and
invaraint under translations; this clearly amounts to being isotropic about all points. The
Killing vectors for translations are, from (6.138), in Cartesian coordinates

η1 ¼ ∂
∂x

; η1
μ ¼ ð0; 1; 0; 0Þ;

or, in spherical polars

η1 ¼ sin θ cos�
∂
∂r

þ 1

r
cos θ cos�

∂
∂θ

� 1

r

sin�
sin θ

∂
∂�

;

η1
μ ¼ 0; sin θ cos�;

1

r
cos θ cos�; � 1

r

sin�
sin θ

� �
:

(10:32)

Similarly

η2
μ ¼ 0; sin θ sin�;

1

r
cos θ sin�;

1

r

cos�
sin θ

� �
;

η3
μ ¼ 0; cos θ; � 1

r
sin θ; 0

� �
:

(10:33)

Killing’s equation (10.5) applied to (10.33) gives, for (μν) = (00)

g00;1 ¼ 0 ) g00 ¼ g00ðtÞ; (10:34)

and with (μν) = (22)

g22ðr; tÞ ¼ AðtÞ r2: (10:35)
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Finally (μν) = (12) and (02) give

g11 ¼ 1

r2
g22 ¼ AðtÞ; g01 ¼ 0

and these conditions inserted into (10.31) give a line element

ds2 ¼ �g00ðtÞ c2 dt2 þ AðtÞ½dr2 þ r2 dθ2 þ r2 sin2θ d�2�: (10:36)

Under a transformation t→ t0 with dt02 = g00(t) dt
2, this may be written, dropping the prime,

ds2 ¼ �c2 dt2 þ S2ðtÞ½dr2 þ r2 dθ2 þ r2 sin2θ d�2�: (10:37)

In this cosmological metric t is a ‘universal’ time, defined over the whole space-time
manifold; it may be identified with proper time at each galaxy (since all galaxies are
equivalent). The factor S2(t) is clearly an ‘expansion’ factor, affecting the spatial part of
the metric, and therefore indicating an expanding universe. We have then proved rather
formally that an expanding universe is compatible with a homogeneous and isotropic one –
the fact that there is an expansion does not mean that there is a ‘centre’ of expansion. The
common analogy, already described, is with the dots painted on the surface of a balloon
which is then inflated – see Fig. 10.3 above.

The spatial section in the line element above, however, is flat; including the expansion
factor S2(t) it is conformally flat. We must generalise this and consider the cases where it is
curved, which, in general, it may be. A curved spatial hypersurface, however, may be
embedded into a flat 4-dimensional Euclidean space E4, just as the spherical surface S2 may
be considered embedded into the flat space E3. The simplest model is a simple generalisation
of this case; that the spatial section is essentially a 3-sphere S3 of radius a with the equation

ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 þ ðx4Þ2 ¼ a2; (10:38)

where x1,…, x4 are the Cartesian coordinates in E4. This equation is analogous to that of S2

in E3: x2 + y 2 + z2 = a2 is a spherical surface of radius a. The fourth coordinate x4 above has,
of course, nothing to do with time; E4 is a (‘fictitious’) flat space in which is embedded
3-physical-dimensional space. It is convenient to introduce spherical coordinates for S3,

x1 ¼ a sin χ sin θ cos�; x2 ¼ a sin χ sin θ sin�;

x3 ¼ a sin χ cos θ; x4 ¼ a cos χ:
(10:39)

The coordinates χ, θ, � label points on S3, so we are now using a coordinate system

ðx0; x1; x2; x3Þ ¼ ðct; χ; θ; �Þ: (10:40)

In dealing with the flat space E3 above we found that the Killing vectors for rotations, (10.8),
(10.9), gave us, via Killing’s equation (10.5), the isotropic line element (10.30). In the
present case we have a slightly different coordinate system so we should check that our new
Killing vectors also give an isotropic metric. Analogous to (10.7) the three Killing vectors
for rotations in the (23), (31) and (12) planes are

x1 ¼ x2
∂
∂x3

� x3
∂
∂x2

; x2 ¼ x3
∂
∂x1

� x1
∂
∂x3

; x3 ¼ x1
∂
∂x2

� x2
∂
∂x1

: (10:41)
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In the coordinate system (10.40) we find

�1
μ ¼ sin χ sin θ sin� 0; cos χ cos θ;� sin θ

sin χ
; 0

� �

� sin χ cos θ 0; cos χ sin θ sin�;
cos θ sin�

sin χ
;

cos�
sin χ sin θ

� �
¼ 0; 0;� sin�;� cot θ cos�ð Þ;

exactly as in (10.8). The other Killing vectors are also given by (10.9). The consequences of
isometry under these rotations therefore follow exactly from the equations above and we end
up with the metric (10.30), or

ds2 ¼� g00ðχ; tÞ c2 dt2 þ 2g01ðχ; tÞ c dχ dt
þ g11ðχ; tÞ dχ2 þ g22 ðχ; tÞ ½dθ2 þ sin2θ d�2�; (10:42)

the coordinate χ playing the role of r in the flat case.
We must now extend the symmetry to include isometry under rotations in the (14), (24)

and (34) planes. These take the place of translations in the flat case, since there is no
translational symmetry in a curved space – see the examples at the end of Section 6.6. The
Killing vectors for rotations in the (14), (24) and (34) planes are

η1 ¼ x4
∂
∂x1

� x1
∂
∂x4

; η2 ¼ x4
∂
∂x2

� x2
∂
∂x4

; η3 ¼ x4
∂
∂x3

� x3
∂
∂x4

: (10:43)

The components of η3 in the basis
∂
∂t

�
,
∂
∂χ
,
∂
∂θ

,
∂
∂�

�
are

η3
μ ¼ � sin χ cos θð0;� sin χ; 0; 0Þ þ cos χ 0; cos χ cos θ;� sin θ

sin χ
; 0

� �
¼ ð0; cos θ;� cot χ sin θ; 0Þ;

(10:44)

or

η3 ¼ cos θ
∂
∂χ

� cot χ sin θ
∂
∂θ

: (10:45)

Killing’s equation (10.5) for η3
μ gives, for (μν) = (00),

g00;1 cos θ ¼ 0;

hence

g00 ¼ g00ðtÞ: (10:46)

For (μν) = (22) we find

g22;1 ¼ 2g22 cot χ;

which on integration gives

g22 ¼ BðtÞ sin2 χ: (10:47)

Putting (μν) = (12) gives

g22 ¼ g11 sin
2 χ; (10:48)
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which with (10.47) yields

g11 ¼ g11ðtÞ: (10:49)

Finally, (μν) = (02) gives

g01 ¼ 0;

hence (see (10.30)) gμν is diagonal,

gμν ¼ diag g00ðtÞ; g11ðtÞ; sin2 χ g11ðtÞ; sin2χ sin2θ g11ðtÞ
� �

;

or, redefining t, as before,

ds2 ¼ �c2 dt2 þ S2ðtÞ½dχ2 þ sin2χ dθ2 þ sin2χ sin2θ d�2�; (10:50)

where S(t) is some function of t. Observing that sin2 χ = r2/a2, then

dχ2 ¼ dr2

r2 � a2

and, absorbing a factor of 1/a2 into S2(t) we have

ds2 ¼ �c2 dt2 þ S2ðtÞ dr2

1� r2

a2

þ r2ðdθ2 þ sin2θ d�2Þ

0
BB@

1
CCA: (10:51)

Instead of the embedding (10.38) of cosmological 3-space into E4, however, we could
have the embedding

ðx4Þ2 � ðx1Þ2 � ðx2Þ2 � ðx3Þ2 ¼ a2; (10:52)

which describes a hyperbolic space. It may be coordinatised by

x1 ¼ a sinh χ sin θ cos�; x2 ¼ a sinh χ sin θ sin�;

x3 ¼ a sinh χ cos θ; x4 ¼ a cosh χ;
(10:53)

which is just (10.39) but with sin χ→ sinh χ, cos χ→ cosh χ. TheKilling vectorsmay bewritten
down and the analysis goes through very similarly to that above, finishing up with the metric

ds2 ¼ �c2 dt2 þ R2ðtÞ dr2

1þ r2

a2

þ r2ðdθ2 þ sin2θ d�2Þ

0
BB@

1
CCA (10:54)

to replace (10.50). This is the cosmological space-time metric for a homogeneous, isostropic
universe with a hyperbolic 3-space section. The possible metrics, (10.37), (10.51) and
(10.54), may be expressed in the single form

ds2 ¼ �c2 dt2 þ R2ðtÞ 1

1� Kr2
dr2 þ r2ðdθ2 þ sin2θ d�2Þ

� �
; (10:55)
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with

K ¼ 0;
1

a2
or � 1

a2
; (10:56)

respectively. The quantity K is called the Gaussian curvature. This quantity is defined
for (2-dimensional) surfaces in a 3-dimensional space, in the following way. Consider a
2-dimensional surface, and visualise the intersection of a plane with this surface in some
region, as in Fig. 10.4. At a point P on the line of intersection a tangent vector v1 may be
drawn, and in the direction of v1 the intersection of the surface and the plane defines, to
lowest order, a circle, with radius say r1. We then say that the curvature of the surface at P in

the direction of the tangent vector v1 is k1 ¼ 1

r1
(large radius, small curvature and vice versa).

In a direction perpendicular to v1 the same is true: in the direction of a tangent vector v2 the

intersection defines a circle with radius r2, say, and curvature k2 ¼ 1

r2
. The Gaussian

curvature K at P is

K ¼ k1k2 ¼ 1

r1r2
: (10:57)

Gauss showed that K does not depend on the choice of the vectors v1, v2, or equivalently on
the planes of intersection. In this sense K is an invariant of the surface at the point
considered. It may, however, have a positive or negative sign. Consider, for example, a
sphere S2 of radius a. Because S2 is a homogeneous space (like S3 is) the curvature is the
same everywhere, so that at any point on the sphere both k1 and k2 are equal to 1/a and

S2 : K ¼ 1

a2
40; (10:58)

the Gaussian curvature is positive. This is because at any point on the sphere the centres of
the two circles (defining the curvatures in two perpendicular directions) are on the same side
of the surface (‘inside’ it). In contrast, consider a point on the surface of a hyperboloid, as in
Fig. 1.8. It is clear that if the plane of intersection with this surface is (zy) the centre of the
circle of intersection is outside the surface, but the circle resulting from the intersection with
the (xz) plane is inside it. Since the centres are on opposite sides of the surface the Gaussian
curvature is negative,

hyperboloid: K50: (10:59)

v1

Fig. 10.4 The intersection of a plane with a surface: at a point of intersection the vector v1 is tangent to a

circle of radius r1.
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A flat surface (plane), of course, has K = 0. In these examples we have considered surfaces
(curved or flat) embedded in a flat Euclidean space E3. In the context of cosmology we are
considering the Gaussian curvatureK of a 3-dimensional space, not a 2-dimensional one, but
actually K, or a generalisation of it, may be defined for a space of any dimension. In fact the
definition is given in Equation (10.63) below.

It is common to simplify the metric (10.55) by expressing it solely in terms of the sign of
the Gaussian curvature, rather than the actual magnitude of it. Define

k ¼ K

jKj (10:60)

so that

k ¼ 1 closed space ðS3Þ;
k ¼ 0 flat space ðE3Þ;
k ¼ �1 open space ðhyperbolicÞ:

(10:61)

Then defining r0 ¼ ffiffiffiffi
K

p
r,
R2ðtÞ
K

= S2(t) and dropping the prime, (10.55) becomes

ds2 ¼ �c2 dt2 þ S2ðtÞ dr2

1� kr2
þ r2ðdθ2 þ sin2θ d�2Þ

� �
: (10:62)

In this form themetric is known as theRobertson–Walkermetric, after its original authors.3 It has
beenobtainedwithout theuseof the field equations, appealingonly to the symmetry requirements
of isotropy and homogeneity. The factor S2(t) describes an expanding space (or, in principle, a
contracting one, though that is not what our Universe is doing at present) and it is noteworthy
that this feature arises naturally from the above symmetry requirements. The coordinates above
are comoving; that is, they move with the matter and are invariant along its world-lines.

It is of great interest to know what the function S(t) is, in the actual Universe, and also to
know what k is. As we shall see, these questions may be answered when we consider the
field equations, which we have not yet done. It is worth noting, however, at this point, that
the steps we have taken so far may be expressed in a slightly different way. It was noted in
Chapter 6 that a space of dimension n is called a maximally symmetric space if it supports
n(n + 1)/2 Killing vectors. We have seen that imposing the conditions of isotropy and
homogeneity implied that the 3-space of the universe allows six Killing vectors, so it follows
that this space is a maximally symmetric space, which is also called a space of constant
curvature. Such a space is characterised by the property4

R� l μ ν ¼ Kðg� μ gl ν � g� ν gl μÞ; (10:63)

whereK is the Gaussian curvature, a generalisation of what was discussed above for surfaces
in a 3-dimensional space. This quantity appears because at any point P of a manifold wemay
define the sectional curvature5

3 Robertson (1935, 1936), Walker (1936).
4 See for example Weinberg (1972), chapter 13.
5 See for example Eisenhart (1926).
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KP ¼ R � λ μ νv1� v2λ v1μ v2ν

ðg� μ gλ ν � g� ν gλ μÞ v1� v2λ v1μ v2v ; (10:64)

where v1
μ and v2

μ are two orthogonal vectors, as explained above. In the case of a
2-dimensional manifold KP is the Gaussian curvature at P. A homogeneous space, with
maximal symmetry, will clearly have K = constant over the space and (10.63) can be shown
to imply (10.62). Let us see how this works for a 3-dimensional space. From (10.62),
using Latin indices in accordance with our convention for a 3-dimensional space, the Ricci
tensor is

ð3ÞRik ¼ glm Rilkm ¼ Kð3gik � gikÞ ¼ 2Kgik ; (10:65)

½ðnÞRik ¼ ðn� 1ÞKgik in n dimensions� (10:65a)

and the curvature scalar is

ð3ÞR ¼ gik ð3ÞRik ¼ 6K ¼ 6

a2
; (10:66)

½ðnÞR ¼ nðn� 1ÞK in n dimensions� (10:66a)

where in the last step we have used (10.57) for the 3-sphere. This result, (10.65), agrees with
a direct calculation for S3 (Problem 10.1).

We close this section by making some remarks about the geometry of S3, a contender for
the space section of the Universe. Like the 2-sphere S2 it is a closed space, one with no
boundary. We write the line element in the form (see (10.51))

dσ2 ¼ dr2

1� r2=a2
þ r2ðdθ2 þ sin2θ d�2Þ: (10:67)

S3 is a homogeneous space and the origin may be chosen anywhere. The circumference of a
circle is found by considering points distinguished only by their θ coordinate, so dr= d� = 0
and dσ= r dθ, hence the circumference is 2πr. Likewise the surface area of a 2-sphere in S3 is

A ¼
ðπ
0

r2 sin θ dθ d� ¼ 4 π r2:

The ‘radius’ of a circle, or sphere, is

radius ¼
ðr
0

1� r02

a2

� ��1=2

dr0 ¼ a sin�1ðr=aÞ4r;

so

circumference of circle
radius of circle

52π: (10:68)
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This is also true of a circle S1 inscribed on a sphere S2. There are other parallels with S2. To
see these first write the line element (10.67) in polar coordinates (10.52):

ðS3Þ: dσ2 ¼ a2½dχ2 þ sin2 χðdθ2 þ sin2θd�2Þ�: (10:69)

The coordinate χ plays the role of distance; the distance from the origin is aχ. The largest
distance in the space is aπ. There is an analogy on the 2-sphere, where

ðS2Þ: dl2 ¼ a2ðdθ2 þ sin2θ d�2Þ: (10:70)

Here θ plays a similar role: the distance from any origin is aθ and aπ is the largest distance on
S2 – that between the north and south poles.

The surface area of a 2-sphere in S3 is clearly 4πa2 sin2χ. As χ increases from 0, this
reaches a maximum at χ= π/2, at a distance of aπ/2 and thereafter decreases with increasing
distance, shrinking to a point as χ → π, a distance aπ away (the ‘opposite pole’). This is
completely analogous to the description of circles on a 2-sphere (S1 on S2). Starting at, say,
the north pole, the circumference of a circle initially increases with increasing distance away
(‘radius’, but measured, of course, on the surface S2 itself), but it reaches a maximum at the
equator, and thereafter, when the circle is in the southern hemisphere, as its distance from the
north pole (‘radius’) increases its circumference decreases (see Fig. 10.5), shrinking to a
point at the south pole, the maximum distance away. Stepping up the dimensions by 1, then,
to consider 2-spheres in S3, the observation is exactly that made above, that with increasing
distance away, the area of the 2-sphere initially increases, but reaches a maximum beyond
which it decreases with increasing radius (distance away) – we may say that bigger spheres
‘fit inside’ smaller spheres.

The volume of the space S3 is

V ¼
ð2π
0

ðπ
0

ðπ
0

a3 sin2χ sin θ dχ dθ d� ¼ 2π2a3;

a finite value. This space, like S3, has no boundary

∂ S3 ¼ 0; (10:71)

N

Fig. 10.5 Circles on the surface of a sphere. Measured from the north pole N the radius of the circle on the

equator is the length of the line on the sphere joining them. A circle in the southern hemisphere has

a larger radius but a smaller circumference than that at the equator.
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it is a closed space. So, as pointed out by Landau and Lifshitz,6 Gauss’s theorem implies that
the total electric charge in the space must be zero, since (see (3.93), (3.95))

Q ¼
ð
S3

ρ dV ¼ ε0

ð
S3

D:E dV ¼ ε0

ð
∂S3

E : n dS ¼ 0;

the total electric charge in a closed universe must be zero.

10.3 Hubble’s law and the cosmological red-shift

The Robertson–Walker metric allows us to make various kinematic deductions, independent
of the specific form of S(t). The first of these is the Hubble expansion. Suppose that our
Galaxy, comoving in the space-time continuum, is located at r= 0, and another galaxy is at
an arbitary parameter r. Its proper distance L from us at cosmic time t is, from (10.62)

L ¼ SðtÞ
ðr
0

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr02

p ¼ SðtÞ f ðrÞ; (10:72)

with

f ðrÞ ¼
sin�1ðrÞ
r
sinh�1ðrÞ

8<
:

ðk ¼ 1Þ
ðk ¼ 0Þ
ðk ¼ �1Þ

(10:73)

so L ∝ S(t): the distance away changes with time (hardly surprisingly!). The velocity of
recession is

v ¼ dL
dt

¼ _SðtÞ
ðr
0

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr02

p ¼
_SðtÞ
SðtÞ L; (10:74)

hence

v / L (10:75)

at any instant. This is Hubble’s law v = HL ((10.2)) with

HðtÞ ¼
_SðtÞ
SðtÞ : (10:76)

Note that Hubble’s constant depends on time in general.
Now consider light reaching us, at r = r2, having been emitted from a galaxy at r = r1 – see

Fig. 10.6. In particular consider successive crests of light, emitted at times t1 and t1 +Δ t1 and
received at times t2 and t2 +Δt2. Since ds

2 = 0 and the light is travelling radially we have

6 Landau & Lifshitz (1971), p. 375.
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0 ¼ �c2 dt2 þ S2ðtÞ dr2

1� kr2
; (10:77)

so for the first crest of light

ðt2
t1

dt
SðtÞ ¼

1

c

ðr2
r1

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p ;

and for the second crest

ðt2þΔt2

t1þΔt1

dt
SðtÞ ¼

1

c

ðr2
r1

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p ;

hence

ðt2þΔt2

t1þΔt1

dt
SðtÞ ¼

ðt2
t1

dt
SðtÞ :

Now Δt1 and Δt2 are very small so we may assume that S(t) is constant over these intervals.
Then, since

ðt2þΔt2

t1þΔt1

¼
ðt2
t1

þ
ðt2þΔt2

t2

�
ðt1þΔt1

t1

we find

Δt1
Sðt1Þ ¼

Δt2
Sðt2Þ ) Δt1

Δt2
¼ Sðt1Þ

Sðt2Þ :

The emitted and observed wavelengths are

le ¼ cΔt1; lo ¼ cΔt2

so the wavelength shift is

r2r1

t1 + Δt1

t2 + Δt2
t2

First crest

Second crest

t1

t

r

Fig. 10.6 Light emitted from a galaxy at r = r1 reaches us at r = r2.
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z ¼ λo � λe
λe

¼ Sðt1Þ
Sðt2Þ � 1: (10:78)

If the Universe is expanding, S(t1) > S(t2) so z> 0, resulting in a red-shift, as observed by
Hubble. This is a cosmological red-shift and is conceptually distinct from a Doppler shift. In
a Doppler shift both the source of the light and the observer are in the same inertial frame,
and are moving relatively to each other. In the cosmological setting both the source and the
observer are comoving; they are each in their own inertial frame. Their relative motion is due
to the expansion of space. And, of course, both of these red-shifts are distinct from the
gravitational red-shift.

It is worth making a remark at this point on the Steady State Theory. In this theory, since
the Universe presents the same aspect at all times, Hubble’s constant must be time inde-
pendent, so (10.76) gives

dS
dt

¼ HS; SðtÞ ¼ Sð0Þ eHt; (10:79)

the expansion of space is exponential, and S(t) is never zero. Moreover, the curvature of the
3-space (10.67) is 6/a2 = 6k, so the curvature of the 3-space part of the Robertson–Walker

metric (10.62) is
6k

S2ðtÞ. In Steady State Theory this must be constant so we must have k = 0,

and the steady state line element is

ds2 ¼ �c2 dt2 þ e2Ht½dr2 þ r2ðdθ2 þ sin2 θ d�2Þ�: (10:80)

Space is flat and the metric is determined on kinematic grounds alone. This metric is of
interest not because the Steady State Theory is of interest but because it has the same form as
the de Sitter metric, which we shall meet below.

10.4 Horizons

Let us suppose that the Universe ‘began’ at time tB. In most models this will be a finite time
in the past, which we may put equal to 0; in the steady state model it is equal to −∞.
Forgetting, temporarily, the expansion of the Universe, we may sketch our world-line, as in
Fig. 10.7, from tB to t0, which is ‘now’. In this simple view of things, at tB there were many
galaxies – ‘objects’ or ‘particles’ – and it must be true that light from some of these galaxies
is only now reaching us for the very first time. These objects are on a ‘horizon’, called an
object horizon or particle horizon; they are the most distant objects we can now see. From
(10.77) the (proper) distance to the particle horizon, rPH, is given by

ðt0
tB

dt
SðtÞ ¼

1

c

ðrPH
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p ¼ 1

c
sin�1rPH ðk ¼ 1Þ (10:81)
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or

rPH ¼ sin c

ðt0
tB

dt
SðtÞ

0
@

1
A ðk ¼ 1Þ; (10:82)

with analogous expressions for k = 0, −1. Objects beyond rPH cannot now be seen by us.
Clearly rPH increases with t0; we shall be able to see more in the future than we can see now.
In fact the horizon at rPH is like an outgoing spherical wave centred on us. In addition, if
there is now someone whom we are able to see for the first time, then ‘they’ must by
symmetry be able to see us for the first time; an outgoing light-front leaving our world-line at
tB will now be reaching them, as also shown in Fig. 10.7.

In certain models we might find rPH =∞, and then the whole Universe can be seen by us,
and there is no object horizon. In the k = 1 case if

c

ðt0
tB

dt
SðtÞ � π

then from (10.80) there is no object horizon, since π is the maximum distance in the S3

model.
Now let us consider a related situation, but this time concerned with the end of the

Universe, at tE (which will be finite in some models, but infinite in others). We ask: what is
the coordinate, rEH, of the most distant event occurring now (at t0) that we shall ever be able
to see? This defines an event horizon. Light from the event horizon must reach us before, or
as, the Universe ends, at tE. So

ðtE
t0

dt
SðtÞ ¼

1

c

ðrEH
0

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p

or

rEH ¼ sin c

ðtE
t0

dt
SðtÞ

0
@

1
A ðk ¼ 1Þ; (10:83)

tB

t0

t

Particle horizons

Our world-line

Invisible

Fig. 10.7 Particle horizon: tB is the ‘beginning’ of the Universe, t0 is ‘now’. In a non-expanding model light

from sources further away than ct0 has not yet reached us.

358 Cosmology



with analogous expressions for the cases k = 0, −1. Events occurring now beyond rEH will
never be seen by us – see Fig. 10.8. If rEH =∞, every event will at some time be seen by us
(by an observer on our world-line). The event horizon is an inward-converging light cone
reaching us at t= tE. In Fig. 10.8 is drawn the world-line of another galaxy, with null
geodesics, along which light will travel, from that galaxy to our own. It is clear that, as
time goes on (as t0 increases) light from this other galaxy will eventually cease to reach us
before the Universe ends at t = tE, so eventually every galaxy passes out of the event horizon
of every other galaxy.

The above reasoning was based on the assumption that the Universe is not expanding, but
we shall now show that concepts of horizons are basically unaffected by taking the
expansion into account. Defining a new time parameter T by

dT ¼ dt
SðtÞ ;

the R–W metric (10.62) becomes

ds2 ¼ S2ðtÞ �c2 dT2 þ dr2

1� kr2
þ r2ðdθ2 þ sin2θ d�2Þ

� �
; (10:84)

which is conformally related to the non-expanding metric

dŝ2 ¼ �c2 dT2 þ dr2

1� kr2
þ r2ðdθ2 þ sin2θ d�2Þ;

these line elements being obtained from one another by an overall conformal factor, as
explained in Section 7.7. As was seen there, this conformal rescaling does not affect null
geodesics (since ds2 = 0⇔ dŝ2 = 0); it only has the effect of ‘bringing in’ points at infinity to
the finite domain. Since the phenomena of event and particle horizons depend essentially on
null geodesics, qualitative conclusions drawn from a static universe will also hold in an
expanding one.

tE

t0

Invisible

Null
geodesics

Observer world-line

Event horizon

World-line of
other galaxy

Fig. 10.8 Event horizon: tE is the ‘end’ of the Universe, t0 is ‘now’. Light emitted from galaxies inside the

event horizon will reach us before the Universe ends.
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10.5 Luminosity–red-shift relation

The expansion of the Universe is governed by the function S(t) and Hubble’s constant H(t)
is, as we have seen, proportional to _SðtÞ. The double derivative €SðtÞ will clearly describe the
deceleration of the expansion: on simple Newtonian grounds the Universe self-gravitates so
we would expect the expansion to be slowing down and €SðtÞ to be non-zero – in fact,
negative. The ‘deceleration parameter’ q, to be defined below, as well as H(t), are quantities
that play key roles in cosmology, since they may be derived from theoretical cosmological
models but they may also be found by exploring relations between various observables. One
of these is the one between luminosity and red-shift, which we now discuss.

Let us calculate the light flux received from a distant source. Suppose the light is emitted
at (cosmic) time te and radial coordinate re, and is just now reaching us, at time t0 and
coordinate r0. This is shown in Fig. 10.9 where we have chosen to put r0 = 0; r decreases as t
increases along the light path. Considering, on the other hand, the source to be at the centre
of a sphere, the light is now crossing the surface of this sphere, whose area is

4 π r2eS
2ðt0Þ:

Suppose the source has absolute luminosity L; this is the amount of energy emitted per unit
time (i.e. power). The total power received per unit area (for example through a telescope) is
not simply L divided by the area above, since there are two red-shift factors to be taken into
account:

(i) Each photon is red-shifted. From (10.78) the ratio of observed and emitted wavelengths
and frequencies is

l0
le

¼ zþ 1 ¼ Sðt0Þ
SðteÞ ¼

νe
ν0

¼ Ee

E0
;

so the energy of each photon is decreased by (1 + z).
(ii) The rate of arrival of photons is decreased by the same factor. Two photons emitted

within a time interval δte will arive within the time interval

δ te :
Sðt0Þ
SðteÞ ¼ δteð1þ zÞ:

t0

t
Us Distant

Source

0

te

re r

Fig. 10.9 Light emitted from a source at re at time te reaches us, at a position r0 (= 0 here) at time t0.
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Hence the power received per unit area, which is the apparent luminosity l, is7

l ¼ L

4πre2S2ðt0Þ
: 1

ð1þ zÞ2 ¼
LS2ðteÞ

4πre2S4ðt0Þ : (10:85)

A parameter clearly related to apparent luminosity is the luminosity distance dL defined by

l ¼ L

4πdL
2 : (10:86)

We now turn to observables. Besides Hubble’s constant

HðtÞ ¼
_SðtÞ
SðtÞ ; (10:87)

we also define the deceleration parameter q(t),

qðtÞ ¼ �
€SðtÞ
_SðtÞ2 : (10:88)

Expanding about t= t0 and with

H0 ¼ Hðt0Þ; q0 ¼ qðt0Þ (10:89)

we have

SðtÞ ¼ Sðt0Þ þ ðt � t0Þ _Sðt0Þ þ 1=2 ðt � t0Þ2 €Sðt0Þ þ � � �
¼ Sðt0Þ ½1þ ðt � t0ÞH0 � 1=2ðt � t0Þ2q0H2

0 þ � � ��: (10:90)

We now want to express (t − t0) in terms of the red-shift z, an observable quantity. From
(10.78), and using (10.90),

z ¼ Sðt0Þ S�1ðteÞ � 1 ¼ ½1þ ðte � t0ÞH0 � 1=2ðte � t0Þ2q0 H2
0 þ � � ���1 � 1

¼ H0ðt0 � teÞ þ 1þ q0

2

� �
H0

2ðt0 � teÞ2 þ � � � :

Inverting this gives

t0 � te ¼ z

H0
� 1þ q0

2

	 

H0

z

H0

� �2

¼ 1

H0
z� 1þ q0

2

	 

z2

h i
: (10:92)

Now let us find an expression for re. From (10.62), for light travelling radially we have

ðt0
te

dt
SðtÞ ¼

ðre
0

½1� kr2��1=2 dr: (10:93)

7 This argument, invoking photons, clearly relies on quantum theory, which is hardly ideal in the context of General
Relativity. For an argument for inclusion of the factor (1 + z)−2, which is based on GR alone, see Robertson
(1938).
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The left hand side of this is, from (10.90)

lhs ¼ S�1ðt0Þ
ðt0
te

½1� H0ðt � t0Þ þ H2
0 ðt � t0Þ2 þ q0

2
H0

2ðt � t0Þ2 þ � � �� dt

¼ S�1ðt0Þ ½ ðt0 � teÞ þ 1=2H0ðt0 � teÞ2 þ � � ��;
while the right hand side is

rhs ¼ re þOðre3Þ;
so to lowest order in re and using (10.93)

re ¼ 1

Sðt0Þ ðt0 � teÞ þ H0

2
ðt0 � teÞ2 þ � � �

� �
¼ 1

Sðt0ÞH0
z� 1þ q0

2

	 

z2 þ z2

2

� �

¼ 1

Sðt0ÞH0
z� 1=2 ð1þ q0Þz2�:
�

(10:94)

Now substituting successively (10.94), (10.91) and (10.93) into (10.85) gives

l ¼ L

4π
� S

2ðteÞ
S2ðt0Þ �

H0
2

z2
½ 1� 1=2ð1þ q0Þz ��2

¼ LH0
2

4πz2
½ 1þ ðte � t0ÞH0 þ � � ��2 ½1þ ð1þ q0Þz�

¼ LH0
2

4πz2
ð1� 2zÞ ½ 1þ ð1þ q0Þ z �

¼ LH0
2

4πz2
½1þ ðq0 � 1Þz�: (10:95)

This is the luminosity–red-shift relation. An equivalent relation is the distance–red-shift
relation, which follows from (10.95) and (10.86):

dL ¼ 1

H0
½z� 1=2ðq0 � 1Þz2�: (10:96)

From these relations between observable quantities it is, in principle, possible to findH0 and
q0. Hubble’s constant is the easier parameter to find, being simply related to the gradient of
the dL–z graph for small z. Recent estimates give8

H0 ¼ ð55� 85Þ km s�1 Mpc�1; (10:97)

or

H0 ¼ h � 100 km s�1 Mpc�1; h ¼ ð0:55�0:85Þ: (10:98)

The determination of q0 has, however, seen some rather dramatic developments over the last
10 years. Before about 1998, again working in the area of small red-shifts (z up to about 0.4

8 Freedman (1997).
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or 0.5), q0 was reckoned to be between 0 and 1; a fairly large uncertainty, but positive,
corresponding to a decelerating universe, understandable through Newtonian intuition.

More recently, however, the data have improved and the reason for this is related to
improved estimates of distance. To know the luminosity distance dL we have to know the
absolute luminosity of the source L – see (10.86). In general this gives rise to a problem: if a
star is faint it could be because it is intrinsically faint, or because it is brighter but further
away. How do we know which? We rely on so-called ‘standard candles’, sources whose
absolute magnitudes are known. The classic example is a Cepheid variable. These are stars
whose luminosity varies periodically, but with a period dependent on the luminosity. Using
Cepheid variables enables us to find dL, and measuring the red-shift earns the star a place on
the dL−z plot. Beyond a particular distance, however, Cepheid variable stars become too
faint. Their role as standard candles, has, however, now been taken over by type 1a super-
novae. These are binary white dwarf systems, whose heavier partner attracts material (mass)
from the lighter partner until its mass exceeds the Chandrasekhar limit (see Section 7.3),
resulting in an explosion leading to a supernova – bright, and visible from far away!
Crucially, the luminosity of an exploding white dwarf is a fairly good standard candle so
the distance of these supernovae can then be estimated and they enable more data to appear
on the dL−z plot, with higher values of dL and z, so that in particular the non-linear term in
(10.96) can be found with some accuracy. And, surprisingly, q0 turns out to be negative – the
expansion of the Universe is actually accelerating, not slowing down. Newtonian intuition
fails here, but it turns out that this scenario is not new in cosmology. Einstein introduced his
famous cosmological constant Λ to solve a problem that has gone away, but Λ corresponds
exactly to an accelerating expansion. We shall return to this topic below.

10.6 Dynamical equations of cosmology

The Robertson–Walker metric (10.62)

ds2 ¼ �c2 dt2 þ S2ðtÞ dr2

1� kr2
þ r2ðdθ2 þ sin2θ d�2Þ

� �
(10:100)

contains the ‘free’ functions S(t) and k, describing the exansion and the curvature of space.
The Einstein field equations (5.24)

Rμν � 1=2 gμνR ¼ 8πG
c2

Tμν (10:101)

will yield equations for S(t) and k so enabling us to see what sort of universe General
Relativity permits (provided we have an expression for the energy-momentum tensor).

The quickest way to find the left hand side of (10.101) is to use differential forms. The
metric (10.100) may be written

ds2 ¼ �ðq0Þ2 þ ðq1Þ2 þ ðq2Þ2 þ ðq3Þ2 (10:102)

which, with basis 1-forms
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q0 ¼ c dt; q1 ¼ Su�1 dr; q2 ¼ Sr dθ; q3 ¼ Sr sin θ d�; (10:103)

where

uðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

p
(10:104)

is an orthonormal (anholonomic) basis with metric tensor

gμ ν ¼ ημ ν ¼ diagð�1; 1; 1; 1Þ: (10:105)

The exterior derivatives of the basis forms are

dq0 ¼ 0; (10:106a)

dq1 ¼ _Su�1 dt ^ dr ¼
_S

cS
q0 ^ q1; (10:106b)

dq2 ¼ _Sr dt ^ dθ þ S dr ^ dθ ¼
_S

cS
q0 ^ q2 þ u

Sr
q1 ^ q2; (10:106c)

dq3 ¼ _Sr sin θ dt ^ d�þ S sin θ dr ^ d�þ Sr cos θ dθ ^ d�

¼
_S

cS
q0 ^ q3 þ u

Sr
q1 ^ q3 þ cot θ

Sr
q2 ^ q3: (10:106d)

The structure equations (3.182)

dq μ þ w μ
� ^ q� ¼ 0 (10:107)

give, for equation (10.106a),

w0
1 ^ q1 þ w0

2 ^ q2 þ w0
3 ^ q3 ¼ 0; (10:108)

where we have used the fact that

wμ ν ¼ �wν μ; (10:109)

which follows from (10.105) and (3.191). Equations (10.106b) and (10.107) give

� w1
0 ^ q0 � w1

2 ^ q2 � w0
3 ^ q3 ¼

_S

cS
q0 ^ q1;

which implies that

w1
0 ¼

_S

cS
q1 ¼

_S

c
u�1 dr: (10:110)

Next, (10.106c) gives

� w2
0 ^ q0 � w2

1 ^ q1 � w2
3 ^ q3 ¼

_S

cS
q0 ^ q2 þ u

Sr
q1 ^ q2;

which implies that
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w2
0 ¼

_S

cS
q2 ¼ r _S

c
dθ; w2

1 ¼ u

Sr
q2 ¼ u dθ; (10:111)

and finally (10.106d) and (10.108) give

� w3
0 ^ q0 � w3

1 ^ q1 � w3
2 ^ q2 ¼

_S

cS
q0 ^ q3 þ u

Sr
q1 ^ q3 þ cot θ

Sr
q2 ^ q3

and hence

w3
0 ¼

_S

cS
q3 ¼

_S

c
r sin θ d�;

w3
1¼ u

Sr
q3 ¼ u sin θ d�;

w3
2 ¼ cot θ

Sr
q3 ¼ cos θ d�:

(10:112)

Note that equations (10.110)–(10.112) satisfy (10.108)–in fact each term separately van-
ishes in this equation.

Having found the connection 1-forms we now calculate the curvature 2-forms from (4.45)

Ωμ
ν ¼ dw μ

ν þ w μ
l ^ wl

ν: (10:113)

We have

Ω1
0 ¼ dw1

0 þ w1
2 ^ w2

0 þ w1
3 ^ w3

0:

The second and third terms vanish and

Ω1
0 ¼

€S

c
u�1 dt ^ dr ¼

€S

c2S
q0 ^ q1: (10:114)

The Riemann curvature tensor follows from (4.39)

Ωμ
ν ¼ 1=2Rμ

νρσqρ ^ qσ; (10:115)

hence

R1
001 ¼

€S

c2S
¼ �R1

010 (10:116)

and all other R1
0ρσ vanish. Similarly we have

Ω2
0 ¼ dw2

0 þ w2
1 ^ w1

0 þ w2
3 ^ w3

0 ¼ r€S

c
dt ^ dθ ¼

€S

c2S
q0 ^ q2 (10:117)

and (10.115) gives

R2
002 ¼

€S

c2S
¼ �R2

020: (10:118)

The same equation holds for R3
003 so we have
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R1
010 ¼ R2

020 ¼ R3
030 ¼ �

€S

c2S
: (10:119)

The remaining components of the Riemann tensor are found using, for example

Ω2
1 ¼ dw2

1 þ w2
0 ^ w0

1 þ w2
3 ^ w3

1 ¼ uu0

S2r
�

_S2

c2S2

� �
q1 ^ q2; (10:120)

from which

R2
121 ¼ 1

S2
k þ

_S2

c2

� �
: (10:121)

Similarly we have

R3
131 ¼ R3

232 ¼ R2
121 ¼ 1

S2
k þ

_S2

c2

� �
: (10:122)

From these equations the components of the Ricci tensor are easily found. For example

R00 ¼ Rμ
0μ0 ¼ R1

010 þ R2
020 þ R3

030 ¼ �3
€S

c2S
;

R 11 ¼ R0
101 þ R2

121 þ R3
131 ¼

€S

c2S
þ 2

S2
k þ

_S2

c2

� �
¼ R 22 ¼ R 33:

(10:124)

The curvature scalar may then be found (recall the metric (10.105))

R ¼ η00R 00 þ η11R 11 þ η22R 22 þ η33R 33 ¼ �R 00 þ 3R 11 ¼ 6
€S

c2S
þ 6

S2
k þ

_S2

c2

� �
:

(10:125)

In addition it is found that

R 12 ¼ R 13 ¼ R 23 ¼ R 01 ¼ R 02 ¼ R 03 ¼ 0: (10:126)

For the energy-momentum tensor we adopt the model of the perfect fluid. From (7.8)
this is

Tμν ¼ p

c2
gμν þ ρþ p

c2

	 

uμ uν: (10:127)

In the comoving frame u0 = u0 = 1, u
i = ui= 0 and gμν= ημν, so

T 00 ¼ ρ; T 11 ¼ T 22 ¼ T 33 ¼ p

c2
; Tij ¼ 0 ði 6¼ jÞ; T0 i ¼ 0: (10:128)

We are now in a position to write down the field equations (10.101). The ‘time-time’
component

R 00 � 1=2η00R ¼ 8πG
c2

T 00

(recall the meric (10.105)!) gives, with (10.123), (10.125) and (10.128)
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_S2 þ kc2 ¼ 8πG
3

ρS2 (10:129)

and the ‘space-space’ component

R11 � 1=2η 11R ¼ 8πG
c2

T 11

gives

2S €S þ _S2 þ kc2 ¼ � 8πG
c2

p S2: (10:130)

Equation (10.129) is called the Friedmann equation,9 though more loosely the models
obtained by using particular equations of state are also called Friedmann models – see the
next section.

There is a compatibilty condition linking these last two equations. Differentiating
(10.129) and substituting (for €S) into (10.130) gives, after a bit of algebra

_ρþ 3 ρþ p

c2

	 
 _S

S
¼ 0: (10:131)

This is the compatibility condition for (10.129) and (10.130). In what follows it is conven-
ient to treat (10.129) and (10.131) as the fundamental equations. They are differential
equations and will be solved below. Firstly, however, it is interesting to consider a
Newtonian interpretation of them.

10.6.1 Newtonian interpretation

Consider an expanding Newtonian universe with a centre, and a galaxy of mass m at a
distance r = r0 S(t) from the centre (see Fig. 10.10). Its kinetic and potential energies are

KE ¼ 1=2mv2 ¼ 1=2mr20 _S2; PE ¼ �m
4π
3
r3ρ

� �
G

r
¼ � 4πG

3
mρr2;

and conservation of energy gives

r
m

Fig. 10.10 A Newtonian universe. A galaxy of mass m is at a distance r from the centre.

9 Friedmann (1922).
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1=2 mr20 _S2 � 4πG
3

mρr0
2S2 ¼ E;

_S2 � 8πG
3

ρS2 ¼ 2mE

r02
¼ const;

which is (10.129) with kc2 =−
2mE

r02
.

Furthermore, since the expansion of the Universe must be adiabatic, conservation of
entropy gives

dU ¼ �p dV

where U is the internal energy = ρc2V. Hence

∂
∂t

4π
3
r3ρc2

� �
¼ �p

∂
∂t

4π
3
r3

� �

or

∂ρ
∂t

þ 3
_S

S
ρþ p

c2

	 

¼ 0;

which is (10.131). Equations (10.129) and (10.131) therefore express, in a Newtonian
interpretation, conservation of energy and of entropy.

10.6.2 Critical density

Let us now investigate the consequences of Equations (10.129) and (10.131). Subtracting
(10.129) from (10.130) gives

€S ¼ � 4πG
3

ρþ 3
p

c2

	 

S; (10:132)

showing that €S is always negative, so _S is always decreasing in time – the Universe was
expanding faster in the past than it is now. This is of course precisely what our Newtonian
intuition would lead us to expect, and has already been mentioned earlier in this chapter. We
now see, though, that the slowing expansion is actually a consequence of General Relativity.
An expanding universe means that S was smaller in the past than it is now, and there must
have been a time when it was ‘zero’ (zero, that is, in this classical model, in which masses are
point masses and quantum effects are ignored). This was the initial singularity that marked
the ‘birth’ of our Universe. Putting t= 0 at S= 0 and denoting, as before, the present age of
the Universe by t0 we see, by consulting Fig. 10.11, that since the gradient of the tangent at
t = t0 is _S0 then from (10.76) the intercept on the time axis is H0

−1, which must be greater
than the age of the Universe. With h = 0.55 in (10.98) we have

t051:8� 1010 years
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as an upper limit. This is consistent with independent estimates of the age of the Earth (about
4.5 × 109 years) and of one of the oldest bright cluster galaxies10

tBCG ¼ 13:4þ1:4�1:0 � 109 years:

From (10.129), if k = 0 or −1 _S2 is never zero, so the Universe expands for ever. If k = 1,
however, the expansion will stop ( _S¼ 0) when ρS2 reaches the value 3kc2/8πG. Thereafter,
since €S50; _S will become negative and the Universe will start to contract. These alternative
scenarios are shown in Fig. 10.12. The fate of the Universe, then, depends on k, the sign of
the spatial curvature. What is the value of k?

Let us specialise (10.129) to the present moment (t = t0); then

kc2 ¼ 8πG

3
ρ0S0

2 � _S0
2 ¼ 8πG

3
S0

2 ρ0 �
3H0

2

8πG

� �
:

The last term in brackets, which is clearly a density, is called the critical density ρc,

ρc ¼
3H0

2

8πG
: (10:133)

S

0

1

t

S0

t0

H0

Fig. 10.11 A decelerating universe. Its age is less than the inverse of (the present value of)

Hubble’s constant.

S
k = –1

k = 0

k = 1

t

Fig. 10.12 Three types of cosmological model: k = 1 – expanding phase comes to an end and is followed by a

contracting phase; k = 0 – expansion ceases when the Universe is ‘infinitely dilute’; k =− 1 –

expansion never ceases – time without end.

10 Ferreras et al. (2001).
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With H0 = 72 km s−1 Mpc−1,

ρc ¼ 0:97� 10�26 kgm�3 (10:134)

or more generally

ρc ¼ 1:88h2 � 10�26 kgm�3: (10:135)

This density is important for it determines the sign of k: if ρ > ρc, k is positive and the
Universe will eventually stop expanding and recontract, but if ρ < ρc, it will expand for
ever – there will not be enough matter in it to halt the collapse. There is thus a connection
between the curvature of sapce and the fate of the Universe; but note that these conclusions
are limited to the case of a decelerating universe.

What is the actual density of matter (and radiation) in the Universe? The average density
of luminous (or baryonic) matter – stars and galaxies – is of the order

ρb � 10�28 kgm�3; (10:136)

approximately one proton in every 10 cubic metres. This is only a small percentage of the
critical density (10.134). There is, however, very good evidence that there is a large amount
of mass in the Universe which is not luminous; this is called dark matter. Dark matter is
believed to exist, for example, in galactic haloes – clouds of gas rotating around a galactic
nucleus. Suppose the velocity of the gas a distance r from the centre is v(r) and the total mass
out to a distance r is M(r). Then from Newtonian mechanics we would expect that

GMðrÞ
r2

¼ v2ðrÞ
r

:

For gas well outside the visible part of a galaxy we would expect that M(r) is roughly
constant (independent of r), and we would then have v(r) ~ r−1/2. Now the velocity can be
found by measuring the Doppler shift of the 21 cm hydrogen line, and what is found is that
that v(r) is more or less constant, so M(r) is not constant, but grows proportionately to r,M
(r) ~ r. Hence there must be invisiblematter in the galaxy, with, as it turns out, a total density
much greater than that of the luminous matter. The composition of dark matter is not known,
and there is speculation that at least some of it is non-baryonic – not made of protons and
neutrons, but perhaps other ‘exotic’ particles. This is an important area of modern cosmol-
ogy but will not be pursued further here.

A useful parameter for discussing the contributions to the energy density of material in the
Universe is

Ω ¼ ρ
ρc

: (10:137)

Recent estimates for the baryonic and matter contributions (and note that, in this definition,
‘matter’ includes dark matter and luminous matter) are11

Ω b ¼ 0:044� 0:004; (10:138)

11 Spergel et al. (2003).
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Ωm ¼ 0:27� 0:04: (10:139)

As is discussed below (and as the reader is doubtless already aware) there is also thermal
radiation in the Universe, at a temperature T = 2.72K. This gives a radiation energy density

ρrc
2 ¼ 4σ

c
T4 ¼ 4:16� 10�14 Jm�3

in energy units, or in mass units

ρr ¼ 4:62� 10�31 kgm�3; (10:140)

giving, for the cosmic thermal radiation,

Ω r ¼ 4:8� 10�5: (10:141)

10.7 Friedmann models and the cosmological constant

Let us make some observations about the dynamical equations (10.129) to (10.131) (or
(10.132)) above:

_S
2 þ kc2 ¼ 8πG

3
ρS2; (10:129)

2S€S þ _S2 þ kc2 ¼ � 8πG
c2

p S2; (10:130)

_ρþ 3 ρþ p

c2

	 
 _S

S
¼ 0: (10:131)

These represent, as we have seen, only two independent equations for the three unknowns,
ρ, p and S. A complete solution is possible if one or more relations between these quantities –
for example an equation of state, relating ρ and p – is known.Models constructed in this way
are called Friedmann models, after the Russian mathematician and physicist. There are two
special cases of interest: dust, modelling ordinary matter, and radiation.

The dust model is a zero pressure model. We put p = 0 in (10.132), giving

€S ¼ � 4πG
3

ρS: (10:142)

Differentiating (10.129) gives

2 _S€S ¼ 8πG
3

ð2ρS _S þ S2ρÞ; (10:143)

which, on substituting (10.142), gives

½dust� _ρ
ρ
¼ �3

_S

S
) ρS3 ¼ const ¼ ρ0S0

3: (10:144)
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This is easy to understand: it is simply the consequence of conservation of mass for non-
relativistic matter in an expanding space;m= ρV = const. This describes amatter-dominated
universe. Hardly surprisingly, it is a universe in which q, the deceleration parameter, is
positive, since from (10.142) we have, for the present value of q

q0 ¼ �
€S0S0
_S0
2
¼ 4πG

3
ρ0

S0
2

_S0
2
¼ 4πG

3

ρ0
H0

2
40:

The second case of interest is the radiation gas model, in which12

ρ ¼ 3p

c2
: (10:145)

Then (10.132) gives

€S ¼ � 8πG
3

ρS:

Substituting this in (10.143) gives

½radiation� _ρ
ρ
¼ �4

_S

S
) ρS4 ¼ const ¼ ρ0S0

4: (10:146)

This is to be compared with (10.144) for (non-relativistic) matter. To gain an understanding
of the extra power of S in the radiation case we could argue that if a box of photons, of
volume V, is expanded, the volume of the box increases by a factor S3, but in addition the
energy of each photon E = hν = ch/λ decreases by a factor 1/S, since λ → Sλ under an
expansion of space, so the energy density decreases by 1/S4.

In a universe, therefore, containing matter and radiation (though decoupled), their
respective densities will behave, under expansion, as

ρm / 1

S3
; ρ r /

1

S4
;

ρr
ρm

/ 1

SðtÞ : (10:147)

This is sketched in Fig. 10.13 (notionally a logarithmic plot). If there is any radiation in the
Universe at the present time, it must have dominated at early times. The present densities of
matter and radiation are given by (10.139) and (10.141), so the present Universe is

ρ ρr

Radiation
dominated

Matter
dominated

S (t )

ρm

Fig. 10.13 The density of radiation decreases faster than the density of matter in an expanding universe.

12 See for example Feynman et al. (1963), Section 39–3.
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obviously matter-dominated, but at early enough times it must have been radiation-
dominated. This assumption is a key ingredient in studying the physics of the early
Universe.

Next, let us consider the question of static solutions, thought to be relevant before
Hubble’s discovery that the Universe is expanding. In a static universe _S ¼ €S ¼ 0 and
(10.129) and (10.130) then give

ρ ¼ � 3p

c2
; (10:148)

the Universe is occupied by a fluid with negative pressure (if positive energy density).
Dismissing this as unphysical we may conclude that the equations have no static solutions.
For Einstein in 1917 this was a problem, which he addressed by introducing an extra term
into the field equations,13 so that they now read (in modern notation – Einstein used λ rather
than Λ)

Rμν � 1=2gμνR� gμνΛ ¼ 8πG
c2

Tμν; (10:149)

and Λ is called the cosmological constant. Equations (10.129) and (10.130) then become

_S2 þ kc2 ¼ 8πG

3
ρS2 þ c2

3
Λ S2; (10:150)

2S€S þ _S2 þ kc2 ¼ � 8πG
c2

pS2 þ c2ΛS2: (10:151)

Equation (10.131) is unchanged.
A static universe ( _S ¼ €S ¼ 0) with p = 0 (dust model) now follows if

k ¼ ΛS2; Λ ¼ 4πG
c2

ρ: (10:152)

This is a closed, static universe, the so-called Einstein universe, shown in Fig. 10.14. It is
clear that a positive Λ must represent a ‘repulsive force’ to balance the gravitational
attraction of matter. To see this, consider an empty flat universe, ρ=k = 0. From (10.150)

S

t

λ > 0, k = 1

Fig. 10.14 Einstein universe.

13 Einstein (1917).
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_S2 ¼ c2

3
Λ S2; SðtÞ ¼ Sð0Þ exp c2Λ

3

� �1=2
t

( )
: (10:153)

This is the de Sitter universe, shown in Fig. 10.15. It describes an empty but expanding
space. The space expands by ‘cosmic repulsion’. This is simlar to the Steady State Theory,
except that here ρ= 0. In the de Sitter universe the deceleration parameter is negative

q ¼ �
€SS
_S2

¼ �1;

indicating an accelerating expansion, as observed in our Universe. It is clear then, that this
feature of the Universe will be accounted for, in the language of General Relativity, by a
positive cosmological constant Λ.

The introduction of the cosmological constant by Einstein, however, was not entirely
trouble-free. If we put _S ¼ 0, k= 0 and p= 0 in (10.151) we find, using (10.152)

€S ¼ c2Λ
2

S ¼ �4πρS;

hence €S50 and the solution is unstable. This, together with Hubble’s later discovery that the
Universe is expanding after all, led Einstein to abandon the Λ term, calling its introduction
the ‘greatest blunder’ of his scientific life. As seen above, though, the fact that the expansion
of the Universe is now seen to be accelerating indicates that there is, after all, a place for Λ,
so Einstein’s blunder might turn out to be not such a bad idea after all!

Introducing Λ into the picture, however, considerably complicates matters; there are
many types of solutions to Equations (10.150) and (10.151), depending on the sign and
magnitude of k and Λ. Rather than attempt a general survey we shall consider simply a
particular case, which however does seem to stand a reasonable chance of being correct.
This is the case in which k = 0; the Universe is flat. There is in fact evidence for this from the
now rather detailed observations of the cosmic background radiation, a topic to be discussed
in the next section. The relevant observations are of the anisotropy of this radiation. The
radiation reaching us now was last scattered some hundreds of thousands of years after the
beginning of the universal expansion; and already at that time there were inhomogeneities in
the cosmic dust, which would in the course of time result in the condensation of dust into
galaxies. These inhomogeneities depend on the parameters k and Λ, which govern the
dynamics of the evolution – and at the same time can in effect be measured by analysing the

S

t

S ~ eat

Fig. 10.15 de Sitter universe.
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inhomogeneities in the scattered radiation. The analysis of these is a rather complicated
matter, but Hartle concludes that the evidence, as of 2003, is ‘consistent with’ a flat
universe.14 Making this assumption and writing (10.150) in the form

kc2 ¼ 8πG
3

S0
2 ρ0 þ

c2Λ
8πG

� 3H0
2

8πG

� �
;

where the subscript 0 refers to the present time, then putting k= 0 and ρ = ρr + ρm we have,
with (10.133),

ρ r þ ρm þ c2Λ

8πG
� ρc ¼ 0:

We write this as (see (10.137))

Ω r þ Ωm þ ΩΛ ¼ 1 (10:154)

where

ΩΛ ¼ c2Λ
8πG

� 1
ρc

¼ c2Λ

3H0
2 (10:155)

The term ΩΛ may be said to represent the contribution of the cosmological constant term to
the energy density of the Universe. With Ωr and Ωm taking on the values (10.140) and
(10.139) it is clear thatΩΛ provides the dominant contribution (≈ 0.7) to the dynamics of the
Universe. The physical nature of this contribution is still unclear, but it goes by the name of
dark energy.

10.8 Cosmic background radiation

The discovery, in 1965, that the Universe contains thermal radiation, was a landmark in
twentieth-century cosmology, equal in importance to Hubble’s discovery that the Universe
is expanding. This cosmic microwave background (CMB) radiation was discovered (acci-
dentally!) by Arno Penzias and Robert Wilson,15 who were awarded the 1978 Nobel prize in
Physics. Over the years it has been confirmed that this radiation is almost perfectly isotropic
and fits a blackbody distribution with a temperature of 2.72 K. The most accurate measure-
ments have been obtained from the COBE satellite (Cosmic Background Explorer) launched
in 1989.

Thermal radiation, resulting from a hot beginning of the Universe, had already been
predicted by Gamow in 1946 and developed in key papers by Alpher, Bethe and Gamow and
by Alpher and Herman in 1948.16 The model they proposed, now accepted as the ‘hot big
bang’model, is that in its early moments the Universe contained matter at a high density and

14 Hartle (2003), p. 410.
15 Penzias & Wilson (1965).
16 Alpher, Bethe & Gamow (1948), Alpher & Herman (1948a,b).
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high temperature. This presupposes thermal equilibrium and therefore thermal (blackbody)
radiation, with equilibrium between matter and radiation being maintained by reactions such
as p + n ↔ d + γ, e+ + e− ↔ γ + γ and so on. The idea is that as the Universe has expanded
from this early phase the blackbody radiation has retained its blackbody character and
simply cooled. To demonstrate the feasibility of this model we need to show that it is actually
true – that in our model for the expansion of the Universe, blackbody radiation does indeed
retain its thermal character as space expands. This is what we shall now demonstrate.

First, note that the relation between density and temperature of blackbody radiation is
ρ=aT4 (where a= 4σ/c and σ is the Stefan–Boltzmann constant). Then noting from (10.146)
that ρ ∝ 1/S4 it follows that the variation of Twith S is

T / 1

S
: (10:156)

We shall now show that this is precisely the condition for blackbody radiation to retain its
thermal character under space expansion – for the Planck spectrum to be preserved. The
proof is based on conservation of photon number. In the Planck distribution the number dn(t)
of photons with frequency between ν and ν + dν in a volume V(t1) of space at time t1 is

dnðt1Þ ¼ 8πv2V ðt1Þ dv
c3 exp

hv

kTðt1Þ
� �

� 1

� � : (10:157)

At a later time t2 the frequency has been red-shifted to (see (10.78))

v2 ¼ v1 � Sðt1ÞSðt2Þ (10:158)

and the volume changed to

V ðt2Þ ¼ V ðt1Þ � S
3ðt2Þ

S3ðt1Þ ;

hence

v1
2 V ðt1Þ dv1 ¼ v2

2 V ðt2Þ dv2 (10:159)

and the – conserved – number of photons in the stated frequency range is, from (10.157),
using (10.158)

dnðt2Þ ¼ 8πv21 V ðt1Þ dv
c3 exp

hv2
kTðt2Þ

� �
� 1

� � :

The condition that this is the same as dn(t1) is

ν2
Tðt2Þ ¼

ν1
Tðt1Þ ;

i.e. from (10.158)
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Tðt2Þ ¼ Tðt1Þ � Sðt1ÞSðt2Þ ;

or

TðtÞ / 1

SðtÞ ; (10:160)

which is exactly the same as (10.156). Hence conservation of photon number guarantees that
the blackbody nature of the radiation is preserved under space expansion. Finally it is useful
to recall that the energy density of the radiation is, from (10.157),

ρrðtÞ ¼
ð

hν
V ðtÞ dnðtÞ ¼ 8πh

c3

ð1
0

v3 dv

exp
hv

kTðtÞ
� �

� 1
¼ 8π5k4

15c3h3
T4ðtÞ ¼ a T 4ðtÞ; (10:161)

where a = 4σ/c = 7.56× 10−16 Jm−3 K−4, σ is the Stefan–Boltzmann constant, and we have
used the well-known integral17

I ¼
ð1
0

z3 dz
ez � 1

¼ π4

15
: (10:162)

10.9 Brief sketch of the early Universe

It seems that almost everyone in the world knows about the Big Bang theory; that the
Universe began in a hot and very dense phase, from which it has expanded, and is still
expanding, some thousands of millions of years later. It is indeed a most remarkable
achievement of twentieth-century physics; that by using the laws of nature, formulated
here on Earth in the last three hundred years or so, we are able to give such a detailed account
of the first few minutes of the Universe. In particular, we are able to ‘predict’ helium
synthesis during these early moments, with very good numerical agreement with the amount
of primordial helium found in the Sun and the interstellar medium. Amongst other things,
this must imply that the laws of nature have not changed with time. This is surely a
remarkable fact; the laws we understand at present are something like the absolute truth.
In my opinion the Big Bang account of the birth of the Universe is so remarkable that every
educated person should be aware of it, and for this reason the present section is devoted to a
broad overview of its main features. For more detailed accounts the reader is referred
elsewhere.

We have seen (see Fig. 10.13) that if there is any radiation present in the Universe now, in
the early moments its contribution to the dynamics of its evolution must have dominated that

17 See for example Mandl (1988), Appendix A1.
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of ordinary matter. And indeed there is thermal radiation in the Universe so we can proceed
to investigate Equation (10.129),

_S2 þ kc2 ¼ 8πG
3

ρS2 (10:129)

with ρ ∝ 1/S4, as in (10.146). It is clear that as we go backwards in time S becomes smaller
and smaller, the right hand side of (10.129) becomes larger and larger, so that as S → 0,

8πG
3

ρS2 	 kc2

and (10.129) reduces to

_S2 ¼ 8πG
3

ρS2: (10:163)

We see that the geometry of space-time is irrelevant in the early Universe.
We should note that ρ properly stands for the density of all relativistic particles, not only

photons (‘relativistic’ means E ≫ mc2). For example, at a temperature of T = 1010K,
kT= 8.7× 105 eV≈ 1MeV. But the rest mass of an electron is mec

2 = 0.5MeV, so electrons
are effectively relativistic at this temperature, as are also electron neutrinos (mc2 < 3 eV) and
muon neutrinos (mc2 < 0.2MeV), as well as the antiparticles of all these particles. We note
that electrons and neutrinos are fermions, so including their contribution to ρ, the total
(mass) density, means that instead of (10.161) we should write

ρ ¼ Neff � ac2 T
4; (10:164)

where Neff is the effective number of relativistic species of particle at a temperature T. It is
not the actual number, since fermions and bosons contribute differently.

For electrons, which obey Fermi–Dirac statistics, the energy density per polarisation
state is18

ρf ¼
1

8π3

ð
EðkÞ f ðEðkÞÞ dk;

where E(k) is the energy of an electron with wave vector k and f(E(k)) is the Fermi function

f ðEðkÞÞ ¼ 1

eE=kT þ 1
¼ ½expðE=kTÞ þ 1��1

(where the chemical potential has been put equal to 0). Performing the angular integrations

ρf ¼
1

2π2

ð
Ek2½expðE=kTÞ þ 1��1 dk:

Now k = (2π/h)p and in the relativistic regime E = pc, so

18 See for example Ashcroft &Mermin (1976), p. 43. Note that the factor 1/4π3 in Ashcroft &Mermin refers to two
polarisation states.
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ρf ¼
4πc
h3

ð1
0

p3 dp
expðpc=kTÞ þ 1

¼ 4πk4

h3c3
I1 � T4 (10:165)

with

I1 ¼
ð1
0

z3 dz
ez þ 1

: (10:166)

By noting that

2

e2z � 1
¼ 1

ez � 1
� 1

ez þ 1

it is easy to show that

I1 ¼ 7

8
I ¼ 7

120
π4

from (10.162), so the energy density per polarisation state of a relativistic fermion is

ρf ¼
7

16
σT 4; (10:167)

to be compared with (10.161) for photons.
To return to the early Universe, at a temperature of about 1010 K the electron and the

positron and the electron and muon neutrinos and their antiparticles will all be relativistic:

e�; eþ; νe;�νe; νμ;�νμ:
In the usual theory of beta decay, the observed parity violation is ascribed to the fact that νe is
massless and exists in only one polarisation state (a left-handed state). By an extension of
ideas the same is supposed to be true of νμ; whereas by contrast e

− and e+ have 2 (= 2s + 1)
polarisation states so the effective number of relativistic particles is

Neff ¼ 1þ ½2� 2þ 4� 1� � 7
16

¼ 9

2
¼ 4:5: (10:168)

In recent years, however, the theory of neutrino oscillations has received much attention
since it offers a solution to the solar neutrino problem. The general idea of neutrino
oscillations is that while νe are emitted from the Sun, for example as products of boron
decay 8B → 8Be + e+ + νe, by the time these neutrinos reach the Earth they have become a
mixture of νe, νμ and ντ; and only the electron neutrinos will be detectable in the laboratory,
resulting in a reduced detection rate; this smaller than expected detection rate is the solar
neutrino problem, which is therefore solved in this theory of oscillations. The theory,
however, only works if the electron and muon neutrinos have different masses (the effect
depends on the difference in their (mass)2), so they cannot both be massless. Assuming, for
the sake of definiteness, that neither of them is massless, they will possess two polarisation
states each and instead of (10.167) we will have
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Neff ¼ 1þ ½2� 2þ 4� 2� � 7
16

¼ 25

4
¼ 6:25: (10:169)

In any case, substituting (10.163) into (10.164) gives

1

S2
dS
dt

� �2
¼ 8πGa

3c2
� Neff � T 4 
 b2T4: (10:170)

We want an equation relating T and t. Equation (10.160), however, implies that

1

S2
dS
dt

� �2
¼ 1

T2

dT
dt

� �2
;

so (10.170) gives

dT
dt

� �2
¼ b2T6 ) dT

dt
¼ �bT3; (10:171)

where the minus sign is chosen since T decreases as t increases. Integrating (10.171) gives

T
ffiffi
t

p ¼ 1ffiffiffiffiffi
2b

p ¼ 1:52N�1=4
eff � 1010 s1=2 K:

With Neff = 4.5 this gives

T
ffiffi
t

p � 1:04� 1010 s1=2 K;

or

T
ffiffi
t

p � 1010: (10:172)

This relates the temperature of the radiation in K to the age of the Universe in seconds, and it
crucially allows us to construct a thermal history of the Universe, at least in its early stages.

Equation (10.172) is displayed in Fig. 10.16, where both T and t are plotted horizontally
on a logarithmic scale. When the universe is 1 second old the temperature is 1010 degrees,
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Fig. 10.16 Thermal history of the Universe.
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when t= 100 s the temperature has dropped to 109K and so on. It is interesting to see that if
one inserts the present age, t ~ 1018 s, into (10.172) one finds T= 10K, not too far from the
actual value of 2.7K. But (10.172) was derived for a radiation-dominated universe, which
the present Universe is not, so there is no reason to expect (10.172) to work all that well for
the Universe at the present time.

What was the Universe like at early times? If we take a journey backwards in time we see
the Universe contract and heat up.When T reaches about 104 K, kT is about 1 eV, of the order
of atomic ionisation energies, so at this temperature matter, composed of atoms and
molecules, will lose its structure and be reduced to atomic nuclei and electrons. When T
reaches 1010 degrees the thermal energy of the order of MeV is enough to dissociate nuclei,
so above this temperature the Universe will consist of protons, neutron, photons, muons,
electrons and neutrinos (and antiparticles of these last three). All structure will have
disappeared. The Universe is a simple mixture of these particles at a very high temperature.
Coming forwards in time, when T drops to about 1000K the plasma will condense into
electrically neutral atoms, so electromagnetic forces will disappear on the large scale and
gravity will take over, allowing for galactic condensation, and, in due course, condensation
into stars, in which nuclear fusion reactions take place, to produce the chemical elements.
The first few of these reactions are

pþ n ! dþ γ; dþ n !3Hþ γ; 3Hþ p !4Heþ γ; (10:173)

and these result in helium production. Heavier nuclei are produced in analogous reactions.
Given our picture of the early Universe, however, since it consists of protons and neutrons
an obvious question is: did the reactions above take place then, producing helium? And if so,
how much helium? And were heavier elements produced? Let us consider the first of these
questions.19

When t= 0.01 s, T = 1011K and at that temperature the number of protons is the same as
the number of neutrons,N(p) =N(n). The argument goes as follows. The following reactions
convert n into p and vice versa:

nþ νe $ pþ e�; n $ pþ e� þ �νe;
so under conditions of thermal equilibrium the relative population of proton and neutron
states will obey a Maxwell–Boltzmann distribution

NðnÞ
NðpÞ ¼ expð�ΔE=kTÞ; (10:174)

where ΔE = [m(n) − m(p)]c2 = 1.3MeV. When T = 1011 K, however, kT = 8.6MeV and the
above ratio is very close to 1, so at an age of 1/100 second the proton/neutron balance is 50%
n, 50% p. Thereafter however, as T drops, an equal population of proton and neutron levels
is not guaranteed and the neutrons will start to decay

n ! pþ e� þ �νe: (10:175)

19 I must emphasise once more that this account is greatly simplified, since I am aiming only to give the broadest of
outlines of this topic. Much more detail will be found in the texts cited in ‘Further reading’.
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The question we are asking is whether the fusion reactions (10.173) will take place in the
environment of the early Universe. The answer is that they will not produce stable helium in
a hot universe, for the photons will still have enough energy to destroy the deuterium as fast
as it is created

pþ n $ dþ γ:

We have to wait until the photons are not energetic enough for this reaction to go ‘back-
wards’. This energy is easily measured in a laboratory and corresponds to a temperature of
about 0.7× 109 K, which in turn corresponds to a time of 226 seconds. After this time, the
‘deuterium bottleneck’ has been passed and the further reactions in (10.173) will proceed,
producing 4He. During these 226 seconds, however, the neutrons have been decaying and
the 50% p, 50% nmixture at t=0.01 seconds has now become, at 226 seconds, 87% p, 13% n.
The fusion reactions which then go ahead produce 2× 13 = 26% 4He and 74% H; and it is
this mixture of hydrogen and helium (with a small admixture of heavier elements) which,
hundreds of thousands of years later, will constitute the gas forming the raw material of stars
and the interstellar medium.

This, in the broadest of terms, is how the ‘standard model’ of Big Bang Cosmology
predicts the primordial synthesis of helium (as well as some heavier elements). The agree-
ment between the theoretical prediction and the observed data is impressive.20 For example,
in HII regions of the interstellar medium21 the proportion of 4He to all nucleonic matter is
predicted to be Y ≈ 0.23 and is found22 to be

Y ¼ 0:231� 0:006:

It should be remarked that one surprising feature of this model is its simplicity. It depends
on a homogeneous universe, Einstein’s field equations applied to a radiation gas, and the
well-established fields of thermodynamics and nuclear physics. No new laws of physics
have had to be invented. This is surely a remarkable fact – that we can account for the
evolution of the Universe from the time when it was only 1/100 second old! From a rather
different perspective, what is also remarkable is that the original Big Bang model of Alpher
and Herman was for a long time not taken seriously. In fact it was not until the 1960s, when
quasars and pulsars were discovered and when in particular John Wheeler (1911–2008)
began to urge the theoretical community to take seriously the work of Oppenheimer and his
collaborators on gravitational collapse and, in the words of Freeman Dyson, to ‘rejuvenate
General Relativity; he made it an experimental subject and took it away from the mathe-
maticians’,23 that physicists seriously began to take on board the idea that there actually was
a time when the Universe was only a few minutes old. In the words of Weinberg:24

This is often the way it is in physics – our mistake is not that we take our theories too
seriously, but that we do not take them seriously enough. It is always hard to realise that
these numbers and equations we play with at our desks have something to dowith the real

20 For a recent review, see for example Hogan (1997).
21 Regions of ionised hydrogen: see for example Carroll & Ostlie (1996).
22 Skillman & Kennicutt (1993).
23 New York Times, 14 April 2008.
24 Weinberg (1978), p. 128.
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world. Even worse, there often seems to be a general agreement that certain phenomena
are just not fit subjects for respectable theoretical and experimental effort. Gamow,
Alpher and Herman deserve tremendous credit above all to take the early universe
seriously, for working out what known physical laws have to say about the first three
minutes. Yet even they did not take the final step, to convince the radio astronomers that
they ought to look for a microwave radiation background. The most important thing
accomplished by the ultimate discovery of the 3 °K radiation background in 1965 was to
force us all to take seriously the idea that there was an early universe.

10.10 The inflationary universe and the Higgs mechanism

Despite the outstanding success of the Big Bang model there are still some questions left
unanswered. Prominent among these is the high degree of isotropy of the cosmic back-
ground radiation. The temperature (2.72K) is the same in all directions – including dia-
metrically opposite ones. This creates a difficulty because of the horizon problem, described
above. The radiation reaching our apparatus has travelled freely throught the Universe since
the recombination era, at about t = 130 000 years. (This is a recombination of protons and
electrons into hydrogen, and happens when the radiation is at a temperature T such that kT is
rather less than the ionisation energy of hydrogen (13.6 eV), since even at that energy the
blackbody spectrum means that in the Wien tail (the high energy end of the spectrum) there
will still be enough photons to ionise hydrogen.) The radiation was thermalised, however,
much earlier, during the first few seconds. Referring to Fig. 10.7, consider a journey
backwards in time. As we approach the Big Bang we see that the horizons of a given
world-line shrink – other bodies in space become progressively invisible as the light from
them has not yet had time to reach us. At the present time we are able to see the light from
very many galaxies, but at early times these galaxies – particularly ones at ‘opposite ends’ of
the Universe – must have been definitely not within each other’s light cone. On the other
hand the cosmic background radiation from these directions is at the same temperature,
which surely argues that these regions must have been in causal contact at very early times,
and therefore within each other’s light cones.

This is known as the horizon problem. A solution was proposed by Guth in 1981:25 all the
points in space – even those in diametrically opposite directions – from which we are now
receiving lightwere actuallywithin each other’s light cones at very early times when thermal
equilibrium held, and since that time space has expanded by such an enormous factor that
these regions now make up the whole of the visible Universe. The situation is sketched in
Fig. 10.17. Let us calculate what expansion factor is necessary for this purpose. Guth’s
argument was developed in the context of particle physics and the reasoning is explained in
some detail below. For reasons to be explained there, the expansion is reckoned to have
begun at a time related to the ‘Grand Unification’ energy

EGUT � 1014 GeV; (10:176)

25 Guth (1981).
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which corresponds to a temperature of TGUT≈ 1027 K and therefore to a time, from (10.172)

tGUT � 10�34 s: (10:177)

At this very early time the size of a causally connected region of space is ~ctGUT≈ 10−26 m.
If the expansion of the Universe since that early time had simply followed a Friedmann–
Robertson–Walker pattern for a radiation-dominated universe, the ratio of the present value
of the expansion factor S0 to its value at the GUT time, SGUT, is, from (10.156) and (10.172)
and noting that the present age of the Universe ≈ 1017 s,

S0
SGUT

� TGUT

T0
� t0

tGUT

� �1=2
� 1017

10�34

� �1=2
� 1026: (10:178)

Under this expansion the causally connected region, originally of size ~10−26m would now
be of size ~1m. Guth’s hypothesis, however, is that it should have expanded to the size of the
visible Universe, that is to ~c× 1017≈ 1026m, which represents a further expansion by a
factor ~1026:

inflationary factor � 1026: (10:179)

Guth’s model, known as the inflationary universe, is that for a very short time, beginning at
tGUT above, the Universe suffered this incredibly large expansion. Exactly how long the
expansion lasted (perhaps 100× tGUT) and, crucially, how the inflationary period ended (the
so-called ‘graceful exit’ problem) are more detailed matters which we shall not consider
here. But the general idea is that after a (very) short time the expansion of space settled down
to the extremely sedate expansion of the Friedmann–Robertson–Walker cosmology that we
see now.

The physical motivation for the inflationary model comes from particle physics, in
particular the notions of spontaneous symmetry breakdown and the Higgs mechanism.
The key development was the theory of unification of the electromagnetic and weak
interactions, into the so-called electroweak interaction. The prototype weak interaction is
neutron beta decay

FRW cosmologyS

Inflationary
period

10–37

10–35
t (s)

Fig. 10.17 The inflationary phase of expansion, starting at about 10−37 seconds and finishing at about 10−35

seconds.
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n ! pþ e� þ �νe:
The (quantum field theoretic) amplitude for this decay is essentially the same as that for the
related scattering process

νe þ n ! e� þ p: (10:180)

We may set this alongside the electromagnetic process

e� þ e� ! e� þ e� (10:181)

of electron–electron scattering. Electrons interact with each other through the electromag-
netic field, and, at the quantum level, the basic interaction is represented by the Feynman
diagram in Fig. 10.18(a) – two electrons exchange one photon, a quantum of the electro-
magnetic field.

According to Fermi’s theory of weak interactions, on the other hand, the Feynman
diagram for the process (10.180) is drawn in Fig. 10.18(b). This is a contact interaction.
The wave functions for the four particles νe, n, e

− and p must all overlap at one point. There
is no action-at-a-distance, therefore no need for a field, therefore no field responsible for this
weak interaction. Fermi’s theory, however, suffered from convergence problems at higher
orders in perturbation theory (basically it is ‘non-renormalisable’), but these problems are
made much less severe if it is supposed that the weak interaction, like the electromagnetic
one, is mediated by a field. In that case the Feynman diagram of Fig. 10.18(b) is replaced
by Fig. 10.18(c); here W− is the quantum of the weak field. This is the basic motivation
behind electroweak theory, and in that theory there are actually four field quanta: γ, W−, W+

(its antiparticle) and Z0. The photon is massless but the others have masses,

mW ¼ 81:8 GeV=c2 ¼ 87mp; mZ ¼ 92:6 GeV=c2 ¼ 99mp (10:182)

(mp = proton mass). The W and Z particles were predicted at these masses, and found at
CERN in 1983.

It is the fact that the masses of W and Z are non-zero that creates the problem, for
electroweak theory is in essence a generalisation of Maxwell’s electrodynamics, from a
gauge group U(1) to the non-abelian group SU(2)⊗U(1); and in that generalisation the new
gauge fields would, like the photon, all have zero mass. The mechanism which allows theW
and Z fields to be massive (but γ to remain massless) is known as the Higgs mechanism.

(b)

e–p

n νe

(c)

w –

p

n

e–

νe

(a)

e–

e–

e–

e–

γ

Fig. 10.18 Feynman diagrams for (a) electron–electron interaction via photon exchange, (b) n + νe→ p + e− in

Fermi’s theory, with no field, (c) the same reaction mediated via W exchange.
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Higgs’ work26 concerned the masses of gauge particles in theories with so-called sponta-
neously broken symmetry, and a good illustration of this, one in which Higgs was himself
interested, is the phenomenon of superconductivity.

The defining characteristic of superconductivity is that at a temperature below a critical
temperature Tc, some metals lose all electrical resistance, R=0: the resistance is not simply
very small, it is zero! R is defined as being the proportionality between the electric field E
and electric current j:

E ¼ R j; (10:183)

or equivalently

j ¼ σ E (10:184)

(where σ is the conductivity). A metal in a superconducting state then exhibits a persistent
current even in no field: j≠ 0 when E= 0. The key to understanding superconductivity is to
describe the current as a ‘supercurrent’ js, and, in contrast to the equation above, to suppose
that this is proportional, not to E but to the vector potential A:

j s ¼ �k2A; (10:185)

with a negative coefficient of proportionality. This is the London equation. In a static
situation, even ifA≠ 0,E =−∂A/∂t= 0, so if R is defined byE =Rjs, then R = 0, as required.

For our purposes the crucial property of superconductors is the Meissner effect, which is
the phenomenon that magnetic flux is expelled from superconductors, as sketched in
Fig. 10.19 – an external magnetic field does not penetrate a superconductor. Higgs’ con-
tribution was to show that, suitably transformed into a relativistic theory, this is equivalent to

B = 0

B

Fig. 10.19 The Meissner effect. Magnetic flux is expelled from a superconductor.

26 Higgs (1964a, b, 1966).
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saying that the photon has an effective mass. The reasoning goes as follows. First, the
London equation explains the Meissner effect; for taking the curl of Ampère’s equation

Δ� B ¼ j

gives

Δð Δ:BÞ � Δ2B ¼ Δ� j :

Applying this to the supercurrent (10.185) and noting that∇ .B= 0 (no magnetic monopoles)
gives

Δ2B ¼ k2B : (10:186)

In one dimension the solution to this is

BðxÞ ¼ Bð0Þ expð�kxÞ; (10:187)

which describes the Meissner effect – the magnetic field is exponentially damped inside the
superconductor, only penetrating to a depth of order 1/k.

Equation (10.186) is equivalent to

Δ2A ¼ k2A : (10:188)

This equation is, however, non-relativistic. To make it consistent with (special!) relativity
∇2 should be replaced by the Klein–Gordon operator□ andA by the 4-vector Aμ = (�,A) (as
in (2.85) above), giving

� 1

c2
∂2

∂t2
þ ∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

� �
Aμ ¼ k2Aμ: (10:189)

The vector potential is a ‘field’ quantity, but we are interested in the photon, the quantum of
the field, so we make the transition to quantum theory by the usual prescription

∂
∂t

! � i
�h
E;

∂
∂x

! i
�h
px; etc:;

giving, for the quantum of the field Aμ

E2 � p2c2 ¼ k2c2�h2; (10:190)

where E is the (total, including rest-mass) energy of the field quantum and p its momentum.
Comparison with Einstein’s relation E2 − p2c2 =m2c4 implies that the mass of the quantum
in a superconductor is

mγ ¼ k�h

c
; (10:191)

the photon behaves as (in effect is) a massive particle. This is the import of the Meissner
effect.

All this would seem to be a long way from cosmology and the early Universe, but the
connection is made by appealing to the Bardeen–Cooper–Schrieffer (BCS) theory of
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superconductivity,27 which is a microscopic theory. At the quantum level the BCS theory
accounts for superconductivity by positing a scalar field � (i.e. of spin 0) which describes a
‘Cooper pair’ of electrons (e−e−); the pairing is in momentum space rather than coordinate
space. Combining this idea with the previous reasoning, we now have the situation that
superconductivity is described by amany-particle wave function (or field)�, non-zero inside
a superconductor, in which alsomγ≠ 0. Outside the superconductor � = 0 andmγ= 0. This is
shown in Fig. 10.20. When a superconductor is heated to above the critical temperature, of
course it loses its superconductivity, reverting to a ‘normal’ state. In this transition the field
�→ 0 and the photon becomes massless. This is a thermodynamic phase transition.

A few years after the work of Higgs, and in the context of elementary particle physics,
Weinberg28 and Salam29 proposed a unified model of weak and electromagnetic interac-
tions. In this model it necessary that the weak field quanta be massive (the reason is
essentially that the weak force is of extremely short range, and is therefore carried by
massive particles30). On the other hand, as has already been remarked, the unified electro-
weak theory is ‘simply’ a generalisation of Maxwell’s electrodynamics, so the field quanta
should all have zero mass. This problem is solved by invoking a mechanism analogous to
superconductivity. There is a scalar field – now called the Higgs field – which is all-
pervasive (unlike the BCS field, which only exists in a superconductor). By virtue of this
field the W and Z particles acquire a mass, in the way that the photon acquires a mass in
superconductivity, but it can be arranged (somewhat miraculously!) that the photon remains
massless. In the Weinberg–Salam theory the Higgs field is a complex scalar field but to
illustrate the mechanism at work we may consider a real field � with a potential energy
function (sometimes called the Higgs potential)

φ ≠ 0
mγ ≠ 0

φ = 0
mγ = 0

Fig. 10.20 Photons are massive in a superconductor, where the scalar (BCS) field � is non-zero, but massless

outside, where there is no field.

27 Bardeen, Cooper & Schrieffer (1957).
28 Weinberg (1967).
29 Salam (1968).
30 The range is proportional to the inverse of the mass of the field quantum; for example electrodynamics has ‘infinite’

range and the photon is massless.
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V ð�Þ ¼ m2

2
�2 þ l

4
�4: (10:192)

On quantisation m becomes the particle mass and the �4 term represents a quartic self-
interaction. The extremal values of V(�), given by ∂V/∂� = 0 (differentiation with respect to
the function �), are clearly

� ¼ 0; �
ffiffiffiffiffiffiffiffiffiffi
�m2

l

r

 0;�a: (10:193)

In a usual field theory m2 > 0 and the second two possibilities are non-physical but if we are
prepared to consider the case m2 < 0 then the function V(�) has two minima and a maximum,
as shown in Fig. 10.21. The maximum is at � = 0 and the minima at � =± a. A potential
function like this begs a question about the nature of the vacuum. Normally the term ‘vacuum’

has two connotations: it is both the state of lowest energy of a system, and also the state in
which no matter and no fields are present. Here, however, these situations become distinct:
when there is no field, � = 0, the energy is not a minimum, but a maximum; and the state of
lowest energy is a state in which the field does not vanish (and is also 2-fold degenerate).

In the case of superconductivity � would represent the BCS condensate, so that �≠ 0
(and mγ≠ 0) when T< Tc; but on heating the material to a temperature T > Tc, � = 0 and mγ

also becomes 0. The same assumption is made in particle physics: in the actual world the
Higgs field � does not vanish (its vacuum value is non-zero) and the quanta W and Z are
massive. But if the temperature were to rise to a value that we may call Tel.wk (the subscript
standing for ‘electroweak’) given by (see (10.176))

kTel:wk ¼ mZc
2 ) Tel:wk � 1015 K; (10:194)

then the vacuum would shift to � = 0. At temperatures higher than this W, Z and γ would all
be massless and the electroweak symmetry becomes an exact symmetry; at lower temper-
atures it is referred to as a spontaneously broken symmetry. This, then, would be the situation
in the early Universe, at times earlier than (see (10.172))

tel:wk ¼ 1010

Tel:wk

� �2

� 10�10 s: (10:195)

V
T > Tc T < Tc

φ

Fig. 10.21 The Higgs potential. When T < Tc it has a maximum at � = 0 and two minima at � = ± a. When T > Tc
there is only a minimum at � = 0.
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At these times, when T > Tel.wk, the vacuum is a ‘true’ minimum of V(�), at � = 0. As the
temperature decreases to below Tel.wk this becomes a ‘false vacuum’, and � then ‘rolls down’
to the new true vacuum at � = ± a. As a result of this phase transition the particles W and Z
pick up a mass.

The final connection with the cosmology of the early Universe is made by making an
identification between the field � and the cosmological constant Λ, as first suggested by
Zeldovich.31 The consequence of this is that when the vacuum expectation value of � is non-
zero, the cosmological constant dictates the dynamics, the Universe behaves like a de Sitter
universe and expands exponentially. So the situation runs along the following lines: at very
early times, when the temperature is extremely high (in the present reasoning, higher than
1015K, as above), electroweak symmetry is exact, all field quanta are massless and the
vacuum value of the Higgs field is zero – as shown in Fig. 10.21. The expansion parameter
goes as t2/3 (see Problem 10.3). When the temperature drops to below Tel.wk the symmetry is
broken, the W and Z quanta become massive and the vacuum value of the scalar field � is
non-zero. The Higgs field, in the shape of a cosmological constant, then drives the
expansion, which is exponential. This lasts for a short time, after which the expansion
reverts to a ‘sensible’ Friedmann–Robertson–Walker type, and the horizon problem is
solved. It should be noted that the flatness problem is also solved. It was noted above that
an analysis of the inhomogeneities of the CMB radiation spectrum indicated that the
Universe is flat, or almost flat. A priori this is difficult to account for, but if the Universe
has undergone an inflationary phase then this will result in space becoming almost flat; the
more a balloon is inflated the smaller the curvature of its surface becomes.

Finally, to give an account of Guth’s model, some adjustments have to be made to the
picture above. The first one is that the temperature Tel.wk which we have been dealing with is
not the temperature assumed in the literature. There the assumption is made that there exists a
‘Grand Unified Theory’ (GUT) of particle interactions. This goes one better than the uni-
fication of electromagnetic and weak interactions achieved by Weinberg and Salam, to
embrace QCD, the theory of the strong interaction between quarks, whose quanta are gluons,
so this is a unification of strong, electromagnetic and weak interactions. In this theory there are
additional field quanta, much heavier than W and Z, so the temperature at which they would
become massless is correspondingly higher than Tel.wk, and the time correspondingly earlier
than tel.wk. The typical GUTenergy is of the order of 10

14GeV, corresponding to a temperature
of 1027K and a time of about 10−34 s, so this would mark the onset of inflation. In honesty it
should be pointed out, however, that the status of GUTs is not particularly assured. There are
actually several varients of GUT, but the simplest one predicts proton decay

p ! eþ þ π0

with an estimated half-life of 1030±1 years (though this is model dependent). The exper-
imental figure is >5× 1032 years.32 It may be that nature does not recognise a unification of
interactions at this level.

31 Zeldovich (1968).
32 The reader might wonder at these figures, which far outstrip the age of the Universe. But recall that the deacy of

particles obeys a probability law, so a lifetime of 1030 years means that in a sample of 1030 protons (a decent
mountain) one will decay each year.
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Further reading

A superb account of cosmology, at a largely non-mathematical level, is Harrison (2000).
Treatments of Killing vectors and isometries in their relation to cosmology will be found in
Robertson & Noonan (1968), Weinberg (1972), Ryan & Shepley (1975), Ciufolini &
Wheeler (1995), McGlinn (2003) and Plebański.& Krasiński (2006). A somewhat older,
though still interesting, account may be found in Landau & Lifshitz (1971). A very nice
introduction to Gaussian curvature and the differential geometry of curves and surfaces is
Faber (1983); see also Struik (1961) and Stoker (1969).

Avery good account of horizons is Rindler (2001), Section 17.3. Detailed accounts of the
luminosity–red-shift relation may be found in McVittie (1965), Weinberg (1972) and
Peebles (1993). For further information about dark matter see Coles & Ellis (1997),
Peacock (1999), Harrison (2000), Hartle (2003) and Roos (2003).

Detailed treatments of the early Universe may be found in Weinberg (1972), Börner
(1988), Kolb & Turner (1990), Peebles (1993), Coles & Ellis (1997) and Mukhanov (2005).
A full account of neutrino oscillations may be found in Raffelt (1996).

Good introductory accounts of superconductivity can be found in Feynman et al. (1965),
Chapter 21 and Ashcroft & Mermin (1976), Chapter 34. For the Higgs mechanism and its
role in electroweak theory see Aitchison & Hey (1982), Cao (1997), Cottingham &
Greenwood (1998), Rubakov (2002), Maggiore (2005), Srednicki (2007), Chapters 9 and
10, or Ryder (1996). A particularly attractive and authoritative (and almost non-
mathematical) account is Taylor (2001). Detailed accounts of inflationary cosmology appear
in Börner (1988), Kolb & Turner (1990), Linde (1990), Mukhanov (2005) and Hobson et al.
(2006). Recent reviews of the inflationary universe may be found in Guth (2000) and Linde
(2000). A good critique of the inflationary model is Penrose (2004), Chapter 28.

Problems

10.1 Prove that the curvature scalar of S3 is R = 6/a2.
10.2 Prove that in the Steady State Theory there is an event horizon but no particle horizon.
10.3 Show that for a radiation-dominated universe S∝ t1/2 and for a matter-dominated one

S∝ t2/3.
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11 Gravitation and field theory

Our picture of the physical world at its most fundamental level, a model that also has a very
high degree of experimental support, runs along the following lines. There are only three
types of interaction: QCD (Quantum ChromoDynamics), which binds quarks into hadrons,
that is, nuclear particles like protons and neutrons, pions and so on; the electroweak
interaction, which is the unification of electromagnetism with the weak nuclear force
(responsible for beta decay); and gravity. The first two interactions are understood in the
context of quantum field theory, more particularly gauge field theory, and the interactions
are transmitted by the field quanta, which are gluons (for QCD), and the photon and the
W and Z bosons which mediate electroweak interactions. Gravity is described by General
Relativity. What is immediately obvious about this statement is that General Relativity
is, conceptually, a completely different sort of theory from the other field theories, because
of its explicitly geometric nature. The whole enterprise of physics, however, is to reduce the
number of fundamental theories and concepts to the absolute minimum, and as a con-
sequence a large number of physicists now work on unification schemes of one sort or
another – supergravity, superstring theory, brane worlds, and so on. One guiding principle at
work in these endeavours is to unite the three fundamental interactions into one interaction,
and another, equally important, aim is to find a quantum theory of gravity; it is clear that
General Relativity is a classical theory since it never at any point employs notions involv-
ing wave–particle duality or Planck’s constant. Since the other interactions are all cast in
the language of quantum theory, should not General Relativity also be given a ‘quantum
treatment’?

A full-scale treatment of these matters is well beyond the scope of this book, but in this
chapter some topics will be introduced which, while by no means offering anything like a
theory of unification, do contain interesting and perhaps relevant considerations to what
might lie ‘beyond’ General Relativity. These topics are gauge theories, the formulation of
the Dirac equation in a general space-time and Kaluza–Klein theory, which describes
electromagnetism in terms of a fifth dimension to space-time.

It is well known that Einstein spent many years at the end of his life trying to find a unified
description of gravity and electromagnetism. It is now apparent that this was a misguided
enterprise, for reasons which neither Einstein nor anyone else realised at the time. The
attractiveness of the idea (to unite gravity and electromagnetism) was that both are long
range forces, and as such have a description in classical physics. The strong and weak
nuclear forces were seen to be something completely different, and particularly in view of
their extremely short range, phenomena that could only be treated by using quantum
concepts. We now see, however, that this view was rather misleading. For one thing,
electrodynamics may be formulated as a quantum field theory – even in Einstein’s day



Feynman, Schwinger and Tomonaga completed the work on quantum electrodynamics
(QED) for which they later received a Nobel prize. But perhaps the most telling develop-
ment was in 1967, only twelve years after Einstein’s death, when Weinberg proposed his
unified theory of weak and electromagnetic interactions. Within a few years this theory
received dramatic confirmation, with the discovery of the field quanta W and Z, and of
so-called neutral current reactions, of the form ν+ p → ν+ p + π0. Electromagnetism was
unified at last, but with the weak (nuclear) interaction, not with gravity. The only reason that
electromagnetism has a long range nature is that the photon happens to be massless, whereas
Wand Z are massive particles. In more recent years we have also seen that protons, neutrons,
pions and the other hadrons are not elementary particles, but are bound states of quarks,
so the ‘true’ interaction at the nuclear scale is not that between protons and neutrons, to make
atomic nuclei, but that between quarks, to make protons, neutrons and other hadrons. This
interaction is called QCD, since it is a generalisation of QED to the case where the symmetry
group is SU(3) rather than U(1), as it is for electromagnetism. Hence the fundamental
interactions are the electroweak interaction, QCD and gravity. Grand Unified Theories
(GUTs) have been proposed to unify QCD and electromagnetism, but there is very little,
if any, experimental support for these. Their most interesting prediction is that the proton
should be unstable, but no proton decays have yet been found, and the experimental upper
limit on the lifetime (about 1032 years) exceeds theoretical predictions. The striking thing
about both electroweak theory and QCD, however, is that they are both ‘gauge theories’ –
they are both generalisations of Maxwell’s theory to cases with an enlarged symmetry
group.

So, in a quest for theories beyond General Relativity, where are we to go? The first
remark to make is that it is not possible to describe the other interactions in geometric
terms, so they cannot be made to look like General Relativity in four dimensions. It is
quite easy to see this. A geometric formulation of gravity is possible because of the
equality of gravitational and inertial mass. Two bodies in a gravitational field experience
a force proportional to their gravitational mass, and this results in an acceleration that is
proportional to (the inverse of) their inertial mass. The equality of these masses means that all
particles accelerate at the same rate in a gravitational field – Galileo’s observation – and
gravity may be simulated by an accelerating frame of reference. But this state of affairs does
not hold for any other of the interations. An electrically charged body will experience a force
proportional to its charge, and the acceleration, as before, depends on this force divided
by the body’s (inertial) mass. The acceleration therefore is proportional to q/m, the
charge-to-mass ratio. This is different for different bodies, so the accelerating frame
in which the electric force vanishes for one body is not the same as that for another
body – there is no universal frame in which electromagnetism ‘disappears’. It is therefore
not possible to ‘geometrise’ it. In the 1960s, however, it was found that ‘gauging’ the
Lorentz transformation of Special Relativity did result in a theory extremely like (but
not identical with) General Relativity. This was moreover a theory that had been
proposed somewhat earlier by Cartan in a purely geometrical context, and on which
in fact Cartan and Einstein had exchanged letters. We shall consider this theory
below, after an introduction to the gauge idea as exemplified in electromagnetism and
Yang–Mills theory.
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11.1 Electrodynamics as an abelian gauge theory

Consider a classical scalar complex field �(xμ) with a Lagrange density1

ℒ ¼ ð∂μ�Þð∂μ��Þ þ m2���; (11:1)

and, throughout this section, the space-time is Minkowski,

gμ v ¼ ημ v ¼ diagð�1; 1; 1; 1Þ: (11:2)

The Euler–Lagrange equations

∂ℒ
∂�

� ∂μ
∂ℒ

∂ð∂μ�Þ
� �

¼ 0 (11:3)

yield the equations of motion

□� m2
� �

� ¼ 0; ð□� m2Þ�� ¼ 0; (11:4)

where

□ ¼ � 1

c2
∂2

∂t2
þ ∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2
:

Equation (11.4) is the Klein–Gordon equation. It is a second order relativistic wave
equation. On the ‘quantum’ substitutions (in the units ħ= c= 1)

∂
∂t

! i
�h
E;

∂
∂x

! � i
�h
px; etc:

it becomes

E2 � p2 ¼ m2;

which is Einstein’s relation, where m is the mass of the quantised version of the field
� (and �*). We now show that the Lagrangian (11.1) possesses a symmetry, as a conse-
quence of which there is a conserved quantity, which we identify with electric charge. The
transformation

� ! expð�iΛÞ�; �� ! exp ðiΛÞ�� (11:5)

clearly leavesℒ invariant: here Λ is a constant parameter and this transformation is called a
gauge transformation of the first kind. For infinitesimal Λ we have

δ� ¼ �iΛ�; δ�� ¼ iΛ��; (11:6)

δ ∂μ�
� � ¼ �iΛ ∂μ�

� �
; δ ∂μ�

�� � ¼ iΛ ∂μ�
�� �
: (11:7)

1 Readers unfamiliar with classical field theory may consult for example Soper (1976), Itzykson & Zuber (1980),
De Wit & Smith (1986) or Ryder (1996).
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We then define a current jμ by

Λj μ ¼ ∂ℒ
∂ð∂μ�Þ δ�ð Þ þ ∂ℒ

∂ð∂μ��Þ δ��ð Þ ¼ ∂μ�
�� � �iΛ�ð Þ þ ∂μ�

� �
iΛ��ð Þ;

j μ ¼ i ��∂μ�� �∂ μ��ð Þ:
(11:8)

This current is conserved:

∂μ jμ ¼ i �� □�� �□��ð Þ ¼ 0; (11:9)

where we have used (11.4). Consequently

∂0

ð
V

j 0 d3x ¼
ð
V

Δ: j d3x ¼
ð
∂V

j : n dΣ ¼ i
ð
∂V

ð�� Δ

�� �

Δ

��Þ dΣ¼ 0;

where Gauss’s theorem has been used and it is assumed that the field � vanishes on the
boundary ∂Vof the volume V. So with

Q ¼
ð

j 0 d3x (11:10)

we have

dQ
dt

¼ 0: (11:11)

Identifying Q with electric charge we now have an account of a (complex) field � which
carries electric charge, a conserved quantity.

The transformation (11.5) demands that at every point in space the field � changes by
the amount indicated, and all at the same time. This global transformation seems to go
against the spirit, if not the letter, of Special Relativity. A more reasonable demand is that
the parameter Λ should be a function of space-time, so that the transformation of the field
� is a local one, different at all points in space. Let us then replace (11.5) with the
transformation

�ðxÞ ! exp f�i ΛðxÞg�ðxÞ; ��ðxÞ ! exp fiΛðxÞg��ðxÞ (11:12)

which is called a gauge transformation of the second kind. Under this rule, with infin-
itesimal Λ(x),

δ� ¼ �iΛ�; δ�� ¼ iΛ��; (11:13)

as in (11.6), but (11.7) becomes replaced by

δð∂μ�Þ ¼ �iΛð∂μ�Þ � ið∂μΛÞ�; δð∂μ��Þ ¼ iΛð∂μ��Þ þ i ∂μΛ
� �

��; (11:14)

with extra terms proportional to ∂μ Λ. The Lagrangian (11.1), however, is not invariant
under (11.13) and (11.14):

δℒ ¼ δ ∂μ�
� �� �

∂ μ��ð Þ þ ∂μ�
� �

δ ∂μ��ð Þ½ � þ m2δ ���ð Þ ¼ ∂μΛ
� �

j μ: (11:15)
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To retain an invariant Lagrangian an extra field Aμ(x) must be introduced into the theory with
a corresponding extra term in the Lagrangian

ℒ1 ¼ �ejμAμ: (11:16)

The coupling constant e has been introduced so that eAμ has the same dimensions as the
operator ∂/∂xμ. Then, if under (11.14) we also have

Aμ ! Aμ þ 1

e
∂μΛ; (11:17)

the change in ℒ1 will be

δℒ1 ¼ �e δj μð ÞAμ � ej μ δAμ

� � ¼ �e δj μð ÞAμ � e ∂μ Λ
� �

j μ: (11:18)

The second term above cancels (11.15), so

δℒ þ δℒ1 ¼ �eðδ jμÞAμ; (11:19)

ℒþℒ1 is still not invariant! In fact

δJ μ ¼ i fðδ��Þ ∂μ�þ �� δð∂μ�Þ � ðδ�Þ ∂μ�� � �½δð∂μ��Þ�g ¼ 2∂μΛð���Þ;

so

δðℒ þ ℒ1Þ ¼ �2eð���Þð∂μΛÞAμ:

If we now add a term

ℒ2 ¼ e2 ���Aμ Aμ; (11:20)

then

δℒ2 ¼ 2e2ð���ÞðδAμÞAμ ¼ 2eð���ÞðδμΛÞAμ

and

δðℒ þ ℒ1 þ ℒ2Þ ¼ 0:

Having introduced a field Aμ, this field will itself contribute a term to the Lagrangian,
independent of ℒ1 and ℒ2, which both describe its ‘coupling’ to the matter field �. Let us
define

Fμν ¼ ∂μAν � ∂νAμ : (11:21)

Then under (11.17)

δð∂μAνÞ ¼ 1

e
∂μ∂νΛ;

and hence

δðFμνÞ ¼ 0: (11:22)
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Then the Lagrangian2

ℒ3 ¼ 1=4F μν Fμν (11:23)

is invariant

δℒ3 ¼ 0:

We have, finally, the total Lagrangian

ℒtot ¼ ℒ þ ℒ1 þ ℒ2 þℒ3

¼ ð∂μ�Þð∂μ��Þ þ m2��� � i e ð��∂μ� � � ∂μ��ÞAμ þ e2 Aμ A
μ ���

þ 1=4Fμ νFμ ν

¼ ð∂μ� þ i e Aμ�Þ ð∂μ�� � i e Aμ��Þ þ m2 ��� þ 1=4 Fμ ν Fμ ν: (11:24)

This suggests a definition of covariant derivatives

Dμ� ¼ ð∂μ þ i e AμÞ�; Dμ�
� ¼ ð∂μ � i e AμÞ��; (11:25)

since under (11.14) and (11.17)

δðDμ�Þ ¼ δð∂μ�Þ þ i eðδAμÞ�þ i e Aμðδ�Þ ¼ �iΛ ð∂μ�þ i e Aμ�Þ
¼ � iΛDμ�; (11:26)

Dμ� transforms in the same way as � (from (11.13)). Then we may write the total
Lagrangian as

ℒtot ¼ ðDμ�ÞðDμ��Þ þ m2 ���þ 1=4Fμ ν Fμ ν: (11:27)

We have not quite finished. The conserved current j μ defined in (11.8) depends on the
ordinary, not the covariant derivative. We need a current, call it J μ, which is defined in terms
of the covariant derivative and which, using the total Lagrangian (11.27), is conserved. We
might guess that, by comparing with (11.8), it would take the form

J μ ¼ ið��Dμ�� �Dμ��Þ: (11:28)

Indeed, we find, in analogy with the argument leading to (11.8),

ΛJ μ ¼ ∂Ltot
∂ðDμ�Þ ðδ�Þ þ

∂Ltot
∂ðDμ��Þ ðδ�

�Þ ¼ ðDμ��Þð�iΛ�Þ þ ðDμ�ÞðiΛ��Þ;

which is precisely (11.28). We now need to show that this current is conserved. Applying
the Euler–Lagrange equation (with ℒ standing for ℒtot)

∂ℒ
∂Aμ

� ∂ ν
∂ℒ

∂ ∂νAμð Þ
� �

¼ 0;

2 This gives, with our metric,ℒ3 =−½(E2−H2). Most books on field theory use the metric (+,−,−,−) and then
ℒ3 picks up a minus sign.
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we have

∂ℒ
∂Aμ

¼ i e ð� ∂μ�
� � ��∂μ�Þ þ 2e2���Aμ;

∂ℒ
∂ð∂vAμÞ ¼ �Fνμ ¼ Fμν;

and hence

∂νF
μν ¼ �i eð� ∂μ�

� � �� ∂μ�Þ þ 2e2���Aμ ¼ �i e ð�Dμ�
� � ��Dμ�Þ

¼ �e J μ: (11:29)

Because of the antisymmetry in (μν) it then follows that

∂μ J
μ ¼ 0; (11:30)

the ‘covariant’ current J μ is conserved.
Let us summarise what we have done.

(i) The Lagrangian (11.1) for a complex scalar field has a symmetry – a rotation in the
complex plane. By virtue of this there is a conserved current j μ and hence a conserved
quantity which may be identified with electric charge Q.

(ii) On making the symmetry a local symmetry – Λ(xμ) – the Lagrangian ℒ is no longer
invariant, but invariance may be restored by introducing a field Aμ and associated
4-dimensional curl

Fμ ν ¼ ∂μAν � ∂νAμ:

This is the electromagnetic field, whose source is electric charge.

This version of electromagnetism is of course not geometrical, but nevertheless there
are some parallels with General Relativity. The reader might be inclined to think that
calling Dμ� a ‘covariant’ derivative is unwarranted; that this is simply an attempt to
make electromagnetism look like General Relativity. But this objection is not really
justified. It will be recalled (see Equations (4.56) and (4.57)) that the commutator of
two covariant derivatives in General Relativity is proportional to the curvature tensor:
from (4.57)

½ Δ

μ;

Δ

ν� e� ¼ Rρ
� μ ν eρ: (11:31)

What about the analogous commutator in electrodynamics? It follows from (11.25) that

½Dμ;Dν�� ¼ ½∂μ þ i e Aμ; ∂ν þ i e Aν�� ¼ i e ð∂μA ν � ∂νAμÞ�
or

� i
e
½Dμ; Dν�� ¼ Fμν �: (11:32)

This would imply an analogy between curvature and field strength. In fact, let us write
(11.21) without indices:

F: : ¼ ∂½�A�� (11:33)
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(where the brackets [ . . ] stand for antisymmetrisation). This may be compared with
Equation (4.31), also written without indices

R� . . . ¼ ∂½�G�� þ ½G; G�: (11:34)

We may then claim that the potential A in electrodynamics plays a role analogous to that of
the connection coefficient Γ in differential geometry; and the field strength F is analogous to
the curvature R. It is true that the second term on the right hand side of (11.34) does not have
a counterpart in (11.33), but even this situation is changed when we generalise electro-
dynamics to the case of a non-abelian gauge symmetry, which we do in the next section.

Let us write some of the above equations in a form that suggests a generalisation of this
treatment of electrodynamics. Equation (11.5) may be written

� ! U �; �� ! U y ��; (11:35)

with

U ¼ eiΛ; U y U ¼ 1; (11:36)

andU† is the Hermitian conjugate ofU. HereU is a unitary (1-dimensional!) matrix – simply
a phase factor. Under a local transformation, Λ =Λ(xμ), we have

∂μU ¼ ið∂μΛÞU : (11:37)

The transformations (11.17) and (11.22) may be written

Aμ ! Aμ � i
e
U y ∂μU ; Fμ ν ! Fμ ν: (11:38)

If two ‘matrices’ U1 and U2 obey (11.36), then so does their product U1U2. Furthermore
each matrix U has an inverse U−1 which obeys the same condition so these matrices form a
group, the group U(1) of unitary matrices in one dimension. This is the symmetry group of
electrodynamics. It is also, however, isomorphic to the group O(2) of orthogonal matrices in
two dimensions. It is easy to see this, for putting

� ¼ 1

2
p ð�1 þ if 2Þ; �� ¼ 1

2
p ð�1 � if 2Þ;

with �1, �2 real, the transformation (11.35) is

�1

�2

� �
! �0

1
�0
2

� �
¼ cos Λ sin Λ

� sin Λ cos Λ

� �
�1

�2

� �
; (11:39)

a rotation in the (�1–�2) plane through an angle Λ. Rotations in 2-dimensional space are
described by orthogonal matrices; they leave the distance from the origin unchanged, so

ð�1
0Þ2 þ ð�2

0Þ2 ¼ �2
1 þ �2

2:

Then, putting �i
0 =Rij�j,

�i
0 �i

0 ¼ Ri j Ri k �j �k
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and hence

Ri j Ri k ¼ δj k ;

which is the condition for orthogonal matrices. They also form a group; if R and S are
orthogonal, so is RS, and so are R− 1 and S− 1. Moreover RS= SR so the group is abelian – all
its elements commute; clearly R(α) R(β) =R(α+ β) =R(β) R(α), where R(α) is a rotation
through an angle α.

All of the above outline theory is summarised in the statement that electrodynamics
is a U(1) gauge theory; the term ‘gauge’ refers to the local nature of the transformation
(11.12) – thatΛ depends on xμ. Away to generalise electrodynamics – and this is the path to
electroweak theory – is to enlarge the symmetry group U(1) to SU(2) (or equivalently SO(2)
to SO(3)). (The S here means the matrices have unit determinant.) This is the subject of the
next section.

Before leaving our account of electrodynamics, however, it is worth making the following
observation. It is crucial to both Special and General Relativity that the speed of light is an
absolute speed. As a statement about photons this is the observation that they must have no
mass; particles with non-zero mass may be brought to rest, but photons (light) are never at
rest. This requirement of zero mass actually follows from gauge invariance. If photons were
to have a mass there would be a term in the Lagrangian of the form

ℒm ¼ m2 Aμ A
μ: (11:40)

The Euler–Lagrange equation would then give an equation of motion

m2Aμ þ ∂νF
μν ¼ 0;

which in the Lorenz gauge ∂νA
ν= 0 would reduce to

□Aμ ¼ m2 Aμ

rather than the usual □Aμ= 0. The Lagrangian (11.40) is however not invariant under the
gauge transformation (11.17), so gauge invariance guarantees zero mass for the photon,
which is crucial for relativity theory.

11.2 Non-abelian gauge theories

It might well be interesting to enlarge the symmetry group U(1) of electrodynamics, to ‘see
what happens’, but why should anyone want to do this? What is the physical motivation? As
often in the history of physics the original motivation for taking this step proved to be
initially unfruitful – though eventually it turned out to be extremely fruitful. The original
idea, due to Yang and Mills,3 was conceived in the context of nuclear physics, and in
particular was concerned with what is now called isospin, but was then known as isotopic, or
sometimes isobaric, spin. And the origin of this idea was the observation that particles with

3 Yang & Mills (1954). This is reprinted with a commentary in Yang (1983).
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nuclear interactions came in ‘families’ with very similar properties. Thus the proton and
neutron have almost the same mass, and the same spin and baryon number. They could then
be thought of as two states of one particle, the nucleon:

N ¼ p
n

� �
: (11:41)

The nucleon is said to have isospin I = ½, the proton having isospin ‘up’, I3 = +½, and the
neutron having isospin ‘down’, I3 =−½. This is in direct analogy with spin; the mathe-
matics is the same, though the physics completely different. Spin is mathematically con-
nected with rotations in 3-dimensional parameter space, and isospin therefore with an
‘abstract’ 3-dimensional space. I3 is the component of the isospin along the ‘third’ axis of
this space. In a similar way, as well as there being two nucleons there are also three pions, π+,
π0 and π−. They have very similar masses (π+ and π− have the same mass, being particle and
antiparticle), the same spin (zero) and baryon number (zero). They therefore are the three
components of a ‘pion’ with isospin I = 1:

π ¼
πþ

π0

π�

0
@

1
A; (11:42)

with π+, π0 and π− respectively having I3 = 1, 0,−1, again in mathematical analogy with the
states of a spin 1 particle. Under an arbitrary rotation in isospin space, p, for example, will
change into a mixture of p and n, and π+ will similarly change into a mixture of all three
pions. Now if the two nucleons had exactly the same mass, and the three pions also had
exactly the same mass, this would give an extra symmetry to the nuclear interactions. It was
this that was the focus of Yang and Mills’ attention.

What is the relation between this symmetry and electrodynamics? The point is that, as
seen from the two examples above, there is a relation between I3 and Q, electric charge. It is
obvious that for the nucleon and pions multiplets we have

N: Q ¼ I3 þ 1=2; π: Q ¼ I3:

Isospin is a ‘vector’ quantity in some space whose third dimension is connected with electric
charge. If electric charge is the source of the electromagnetic field, with all the apparatus of
Maxwell’s equations and the U(1) gauge symmetry we have been considering, might not
isospin be understood by simply generalising the gauge group from SO(2) to SO(3) – from
the group of rotations in two dimensions to rotations in three dimensions? Unlike SO(2),
however, SO(3) is non-abelian – its different elements do not commute. This may be
observed in a simple experiment, as seen in Fig. 11.1. Rotate an object first around the x
axis and then around the y axis, in each case through an angle π/2; and then perform these
rotations in the reverse order. The final configurations are different, so

Rxðπ=2ÞRyðπ=2Þ 6¼ Ryðπ=2Þ Rxðπ=2Þ :
This is true for any angles of rotation. Under a rotation about the z axis through an angle α a
vector transforms as

Vx ! cos αVx þ sin αVy; Vy ! � sin αVx þ cos αVy; Vz ! Vz; (11:43)
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so the rotation matrix is

RzðαÞ ¼
cos α sin α 0
� sin α cos α 0

0 0 1

0
@

1
A: (11:44)

Similarly the rotation matrices for rotations about the x and y axes are

RxðβÞ ¼
1 0 0
0 cos β sin β
0 � sin β cos β

0
@

1
A; RyðγÞ ¼

cos γ 0 � sin γ
0 1 0

sin γ 0 cos γ

0
@

1
A; (11:45)

and it is clear that they do not commute,

RxðβÞRzðαÞ 6¼ RzðαÞRxðβÞ: (11:46)

A rotation through an infinitesimal angle α is, to lowest order

RzðαÞ ¼
1 0 0
0 1 0
0 0 1

0
@

1
Aþ α

0 1 0
�1 0 0
0 0 1

0
@

1
A:

Writing this as

RzðαÞ ¼ 1þ i Jz α;

the generator of rotations about the z axis is

Jz ¼
0 �i 0
i 0 0
0 0 0

0
@

1
A: (11:47)

Rx

Rx

Ry

Ry

x

y

z

Fig. 11.1 Rotations about the x axis and about the y axis do not commute.

402 Gravitation and field theory



In a similar way,

Jx ¼
0 0 0
0 0 �i
0 i 0

0
@

1
A; Jy ¼

0 0 i
0 0 0

�i 0 0

0
@

1
A: (11:48)

These matrices do not commute,

½Jx; Jy� ¼ i Jz and cyclic permutations: (11:49)

A rotation through a finite angle (for example about the z axis) is given by

RzðαÞ ¼ expði JzαÞ; (11:50)

(see Problem 11.1) or, in general, a rotation about an axis n through an angle α is

RnðαÞ ¼ expði n : J αÞ: (11:51)

A vector is an object with three components which transforms under rotations in the
same way as the coordinates (x, y, z), and the three states of the pion, (11.42), transform as
a vector in isospin space. For reasons of our own, however, we are more interested in the
nucleon, which has two components. This is a spinor, and strictly speaking is not a basis for
a representation of the rotation group SO(3), but of SU(2), the group of unitary matrices in
two dimensions, with unit determinant. A general 2× 2 unitary matrix is given by

U ¼ a b
�b� a�

� �
; aj j2þ bj j2¼ 1; (11:52)

so that

UU y ¼ U yU ¼ 1; detU ¼ 1; (11:53)

as may easily be checked. If U1 and U2 are unitary, so is U1U2; unitary matrices, like
orthogonal ones, form a group (but Hermitian ones do not). The structure of SU(2) is (apart
from global considerations4) the same as that of SO(3). In an analogous way to (11.51) we
may write

U ¼ exp½ði=2Þ n�s α�; (11:54)

where σ are the Pauli matrices

σx ¼ 0 1
1 0

� �
; σy ¼ 0 �i

i 0

� �
; σz ¼ 1 0

0�1

� �
: (11:55)

It is easy to check that

σx
2
;
σy
2

¼ i
σz
2

and cyclic perms;
ih

(11:56)

so the generators of SU(2) obey the same commutation relations as the generators of
SO(3), Equation (11.49). It is straightforward to show that (Problem 11.2)

4 For a very nice account of these global considerations see for example Speiser (1964).
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U ¼ exp
i
2
n:s α

� �
¼ cos

α
2
þ i n:s sin

α
2
; (11:57)

so for example if n = nz= (0, 0, 1),

UzðαÞ ¼ cos
α
2
þ i 0

0 �i

� �
sin

α
2
¼ eia=2 0

0 e�ia=2

� �
: (11:58)

Under this transformation a spinor will transform as ψ → ψ 0 = Uψ, or5

ψ ¼ ψ1

ψ2

� �
! ψ1

0

ψ2
0

� �
¼ eia=2ψ1

e�ia=2ψ2

� �
: (11:59)

The outer product of two spinors is

ψψy ¼ ψ1

ψ2

� �
ðψ�

1 ψ�
2Þ ¼

ψ1ψ
�
1 ψ1ψ

�
2

ψ2ψ
�
1 ψ2ψ

�
2

� �
: (11:60)

Under (11.59) it is easy to see that

ðψ1ψ
�
2 þ ψ2ψ

�
1Þ ! cos αðψ1ψ

�
2 þ ψ2ψ

�
1Þ þ sin αfiðψ1ψ

�
2 � ψ2ψ

�
1Þg;

i ðψ1ψ
�
2 � ψ2ψ

�
1Þ ! cos αfiðψ1ψ

�
2 � ψ2ψ

�
1Þg � sin αðψ1ψ

�
2 þ ψ2ψ

�
1Þ;

(11:61)

which may be compared with the transformation of a vector, (11.43). Hence

ðψ1ψ
�
2 þ ψ2ψ

�
1Þ � Vx; iðψ1ψ

�
2 � ψ2ψ

�
1Þ � Vy;

and spinors may be said to transform like the ‘square roots’ of vectors.
So far in this section we have given an outline of the group SU(2) which, unlike U(1), the

symmetry group of electromagnetism, is non-abelian, and so possesses more structure – is
more interesting! We have also deliberately chosen to consider fields with spin ½ (spinors),
because in the next section we want to consider the consequences of gauging the Lorentz
group (which is of course non-abelian), when it acts on a spin ½ particle. It is precisely this
which turns out to have very similar consequences to General Relativity. Our immediate task
now is to consider a spinor field � with Lagrangian (cf. (11.1))

ℒ ¼ ∂μ�
y ∂μ�þ m2�y�; (11:62)

with

� ¼ �1

�2

� �
; �y ¼ ð��

1 �
�
2Þ: (11:63)

This is invariant under

� ! U�; �y ! �yU y; (11:64)

5 A noteworthy feature of this formula is the appearance of the half-angle. It means that under a spatial rotation
through 2π a spinor changes sign,ψ→−ψ. This has actually been observed experimentally for the neutron (a spin
½ particle) by Werner et al. (1975). See also Rauch & Werner (2000).
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where U is a matrix of the form (11.57). This is the generalisation of (11.5). For constant
parameters α it is a gauge transformation of the first kind. Our first job is to find the
conserved current, analogous to (11.8), in this non-abelian theory. The second (and more
crucial) job is to consider the case in which α is position dependent, α = α (xμ), and then to
find the generalisation of the covariant derivatives and invariant Lagrangian, (11.25),
(11.27), in this non-abelian case.

To take the first task first, writing U, given by (11.54), in the form

U ¼ exp i
σa

2
αa

� �
; a ¼ 1; 2; 3 (11:65)

(where σ1 = σx, σ
2 = σy, σ

3 = σz and there is an implied summation over a), the transformation
(11.64) for infinitesimal αa is

� ! 1þ i
2
σaαa

� �
�; (11:66)

so

δ� ¼ i
σa

2
αa�; δð∂μ�Þ ¼ i

σa

2
αað∂μ�Þ: (11:67)

In addition (noting that σa†= σa)

�y ! �y 1� i
2
σa αa

� �
;

so

δ�y ¼ �i�y σ
a

2
αa; δð∂μ�yÞ ¼ �ið∂μ�yÞ σ

a

2
αa: (11:68)

The current is constructed from (cf. (11.8))

∂ℒ
∂ð∂μ�Þ ðδ�Þ þ δ�y ∂ℒ

∂ð∂μ�yÞ
¼ i

2
∂μ�

y ðσaαaÞ�� i
2
�yðσaαaÞ ∂μ�

¼ iαa ∂μ�
y σ

a

2
�� �y σ

a

2
∂μ�

� 	
;

so putting

αajaμ ¼
∂ℒ

∂ð∂μ�Þ ðδ�Þ þ δ�y ∂ℒ
∂ð∂μ�yÞ

gives

jμ
a ¼ i½∂μ�yσ

a

2
�� �y σ

a

2
∂μ��: (11:69)

This current, as well as having four space-time components, also has three ‘internal’
(isospin, or spin) components labelled by a.

405 11.2 Non-abelian gauge theories



It is easily seen that the equations of motion of � and �† are

ð□� m2Þ� ¼ 0; ð□� m2Þ�y ¼ 0; (11:70)

and that, as a consequence, the current jμ
a is conserved,

∂μjμ
a ¼ 0: (11:71)

Now to the second question: what happens when the parameters αa are ‘gauged’, αa →
αa(xμ)? In analogy with the electromagnetic case we shall expect to have to introduce a
‘gauge potential’ Aμ

a (which will now carry an extra index a), that the derivative ∂μ� will
have to be replaced by a covariant derivative Dμ�, and that there will be a field tensor
analogous to Fμν. We are considering an isospin rotation

U ¼ exp i
σa

2
αaðxÞ


 �
(11:72)

and for infinitesimal αa(x) the change in � is given by (11.67)

δ�ðxÞ ¼ ig
σa

2
αaðxÞ�ðxÞ: (11:73)

The covariant derivative �;μ(x) must by definition transform in the same way

δ�;μ ¼ ig
σa

2
αaðxÞ�;μ: (11:74)

We shall show that this follows if �;μ is defined by

�;μ ¼ �;μ � i gAμ
a σ

a

2
�; or Dμ� ¼ ∂μ�� i gAμ

a σ
a

2
�; (11:75)

while Aμ
a transforms as

Aμ
a ! Aμ

a þ ∂μα
a � gεa b cα

bAμ
c: (11:76)

To show this note that the right hand side of (11.74) is

ig
σa

2
αa �; μ � i gAμ

b σ
b

2
�

� �
¼ ig

σa

2
αa�;μ þ g2

4
αaAμ

a�þ ig2

2
εa b cα

cAμ
b σ

c

2
�; (11:77)

where we have used the relation

σaσb ¼ δa b þ i εa b c σc; (11:78)

which holds for the Pauli matrices (as the reader can easily check); note that there is no
distinction between upper and lower positions for the indices a, b, c. On the other hand, from
(11.73), (11.75) and (11.76), with a small amount of algebra,

δ�;μ ¼ δ�;μ � ig
σa

2
½ðδAμ

aÞ�þ Aμ
aðδ�Þ�

¼ ig
σa

2
αa�; μ þ g2

4
αaAμ

a�þ ig2

2
εa b c

σa

2
αbAμ

c�

which is the same as (11.77). Hence (11.74) is proved.
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It is useful to write down the finite form of the transformation (11.76), which is

Aμ ! UAμU
�1 � i

g
ð∂μUÞU�1; (11:79)

where

Aμ ¼ Aμ
a σ

a

2
(11:80)

and U is given by (11.72). Indeed, to lowest order in αa,

UAμU
�1 ¼ 1þ ig

σa

2
αa

� �
Aμ

b σ
b

2
1� ig

σc

2
αc

� �

¼ Aμ þ ig
4
Aμ

bðσaσbαa � σbσcαcÞ

¼ Aμ þ ig
4
Aμ

b½σa; σb� αa

¼ Aμ � gεa b c α
aAμ

b σ
c

2
;

and

ð∂μUÞU�1 ¼ i g
σa

2
αa;μ;

so (11.79) is

Aμ
a σ

a

2
! Aμ

a σ
a

2
� g εa b c α

aAμ
b σ

c

2
þ αa;μ

σa

2
;

i.e.

Aμ
a ! Aμ

a þ αa;μ � g εa b c α
bAμ

c; (11:81)

which is (11.76).
In the notation of (11.80), (11.75) is

Dμ� ¼ ∂μ�� i g Aμ �;

or, as an operator equation for the covariant derivative,

Dμ ¼ ∂μ � i g Aμ; (11:82)

which is the generalisation of (11.25) to the non-abelian case, Aμ above being a 2× 2 matrix
in this SU(2) theory. Since we now have a potential Aμ in the non-abelian case, we must
enquire what the generalisation of the field tensor Fμν, Equation (11.21), is to this case. The
best way to proceed is to define the non-abelian field strength as

Fμ v ¼ i
g
½Dμ;Dv�: (11:83)

From (11.82) this becomes

Fμ v ¼ ∂μAv � ∂vAμ � ig½Aμ;Av�; (11:84)
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which after some algebra gives

Fμv ¼ Fμv
a σ

a

2
(11:85)

with

Fμ v
a ¼ ∂μAv

a � ∂vAμ
a þ g εa b c Aμ

b Av
c: (11:86)

In the non-abelian case we should note that the field strength Fμν has acquired a term
quadratic in Aμ, which is absent in pure electromagnetism. Under a gauge transformation U
(see (11.72)) it can be seen, after some algebra, that

Fμ v ! U Fμ v U
�1 (11:87)

(Problem 11.3). Thus Fμν is not gauge invariant, as the equivalent quantity is in electro-
magnetism (see (11.38)), and neither is Fμν F

μν, which would correspond to the final term in
the Lagrangian for the electromagnetic field, Equation (11.27). But since, in this case,

Fμ v F
μ v ! U Fμ v F

μ v U�1;

the trace of this quantity will indeed be invariant (since traces are unchanged under cyclic
permutation of the matrices). With (11.85) we have

tr ðFμ v F
μ vÞ ¼ 1=4 Fμ v

a Fμ v b trðσaσbÞ ¼ 1=2Fμ v
a Fμ v a

(see (11.78)), so

1=2 tr ðFμ v F
μ vÞ ¼ 1=4Fμ v

a Fμ v a: (11:88)

We have, finally, that the Lagrangian for an isospinor field � with a local (‘gauged’) SU(2)
symmetry is

ℒ ¼ ðDμ�yÞðDμ�Þ þ m2�y�� 1=2 tr ðFμ v F
μ vÞ: (11:89)

There is a conclusion of considerable physical significance to be drawn from this
Lagrangian. Since, as we have seen, Fμν contains terms (linear and) quadratic in Aμ, the
final term in ℒ above will contain terms cubic and quartic in Aμ, resulting in the primitive
vertices shown in Fig. 11.2. The significance of these is that the gauge field is

Fig. 11.2 Primitive vertices for non-abelian vector field gauge theories.
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‘self-coupling’; in propagating through space-time it can emit or absorb another quantum of
the field – it acts as its own source. Actually, this can be seen already from the fact that the
field Aμ

a carries the isospin index a: it has three components, those of an ‘isovector’. The
whole spirit of gauge theories is that fields (particles) carrying the conserved quantity
(isospin) are sources of the isovector field. Thus the field Aμ

a is a source for itself. This is
in contrast with the case of electromagnetism. There, charged particles act as sources for the
electromagnetic field, but the electromagnetic field itself carries no charge. Photons are not
charged. This feature of non-abelian gauge theories has a parallel in General Relativity.
Gravitational waves carry energy (albeit non-localised), and anything carrying energy (or
equivalently, mass) acts as the source of a gravitational field. Gravitational waves therefore
generate an ‘extra’ gravitational field. This is an aspect of the non-linearity of General
Relativity, and is shared by non-abelian gauge theories. In the language of quantum theory,
just as there is a 3-boson vertex in SU(2) gauge theory, there should be, in some future
quantum theory of gravity, a 3-graviton (and perhaps a 4-graviton) vertex, analogous to
those of Fig. 11.2.

To conclude this account of non-abelian gauge theories let us summarise some of the
relevant formulae of this section and point out parallel formulae in General Relativity. The
correspondances are quite striking and are shown in Table 11.1. The analogies are between
the gauge potential Aμ and connection coefficients Γ

κ
λμ on the one hand, with corresponding

definitions of ‘covariant derivative’ in the two theories, and, on the other hand, between the
field strength Fμν and curvature Rκ

λμν, defined in terms of the potential and connection
coefficient. The formulae for electromagnetism are the same except that the second,
commutator, term [A, A] in the definition of F is absent in this case, since it is an abelian
gauge theory. (The general relativistic formulae are all given in a coordinate basis.) It is hard
to believe that these similarities are mere coincidences.

11.3 Gauging Lorentz symmetry: torsion

In the previous sections we have discussed a complex scalar field � whose Lagrangianℒ is
invariant under the phase transformation

� ! eiα�:

Table 11.1 Correspondances between non-abelian gauge theories and General Relativity

Non-abelian gauge theory General Relativity

Gauge potential Aμ Connection coefficient Γκλμ
Covariant derivative Dμ� = (∂μ− igAμ)� Covariant derivative Vμ;ρ=Vμ,ρ − Γκμρ Vκ

Field strength F. . = ∂[. A . ] + [A, A] Curvature R.
. . . = ∂[. Γ.] + [Γ, Γ]
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If α is made space-time dependent then ℒ is no longer invariant but invariance may be
restored if a ‘gauge potential’ Aμ is introduced. This is the 4-vector potential of Maxwell’s
electrodynamics. As an extension of these ideas, if � is taken to be a two-component
complex field (a ‘spinor’), the phase transformation above becomes

� ! U�

where U is a unitary 2× 2 matrix with unit determinant – an element of the group SU(2).
When the elements of U are made space-time dependent a similar situation to the previous
one develops; ℒ is no longer invariant but invariance may be restored by introducing a
gauge potential, this time a 2× 2 matrix Aμ ¼ σa

2 Aμ
a. The resulting theory is a general-

isation of electromagnetism which turns out to be recognised in nature as electroweak
theory, rather than as isospin symmetry in nuclear physics, as originally envisaged by
Yang and Mills. Here � corresponds, for example, to the spinor

� ¼ νe
e�

� �
(11:90)

and the three components Aμ
a (a = 1, 2, 3) correspond to the W± bosons carrying the weak

interaction, and a linear superposition of the photon and the Z boson (recall that this is a
quantum theory, so linear superpositions of states are allowed).

In this section we develop the gauge idea further, but in a slightly different direction.
Instead of taking � to be a multi-component field whose members differ in their electric
charge, we take � to be a spinor, but this time in actual ‘spin space’, whose components
differ in their spin projection in a particular direction in space. The characteristics of these
fields (mass, spin) derive from space-time itself, not from any ‘additional’ attributes like
electric charge. And the way these properties are understood – see any book on quantum
field theory – is to assume Lorentz invariance. Our method of procedure, then, is to assume
precisely this, but add the crucial ingredient that the parameters of the Lorentz trans-
formations (‘boost’ velocities, rotation angles) are not constant but are functions of space-
time. This ‘gauging’ of Lorentz invariance has the consequence that derivatives must be
replaced by ‘covariant’ derivatives, involving a ‘gauge potential’. This covariant derivative,
if used in the Dirac equation, a wave equation and therefore a differential equation, allows a
description of (say) electrons in a Riemannian space-time. This is the general programme for
this section, and we begin, for the benefit of readers not already familiar with it, by deriving
the Dirac equation.

The Schrödinger equation

� �h2

2m

Δ2ψ þ V ðxÞψ ¼ i�h
∂ψ
∂t

¼ E ψ; (11:91)

which was so successful in solving many problems in atomic physics in the first part of the
twentieth century, is nevertheless non-relativistic, since it involves second order derivatives
in spatial coordinates but a first order derivative with respect to time. A relativistically
covariant equation should be consistently first order or consistently second order in both
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space and time coordinates. Let us take the view that ψ is a field, which when quantised will
‘become’ a particle of mass m (as in the above equation). Then if this particle has total
energy (rest-mass plus kinetic) E and momentum p, Einstein’s relation

E2 � c2p2 ¼ m2c4 (11:92)

will hold. Using the ‘quantum’ substitutions

E ! �i�h
∂
∂t
; px ! i�h

∂
∂x

; etc:; (11:93)

we may convert (11.92) to a wave equation

� 1

c2
∂2

∂t2
þ Δ2

� �
ψ ¼ mc

�h

� 2
ψ; (11:94)

or, with

□ ¼ � 1

c2
∂2

∂t2
þ Δ2 (11:95)

and in the units ħ = c = 1,

□ψ ¼ m2ψ; (11:96)

the Klein–Gordon equation, as seen in (11.4) above. This is clearly a second order rela-
tivistic wave equation, but Dirac wanted a first order equation. The easiest way of finding
this is simply to suppose that it exists and is of the form

i γ μ ∂μψ ¼ �mD ψ; (11:97)

where the γμ are coefficients of the first order derivative operators ∂μ, mD is the mass of the
Dirac particle and we are using the units ħ=c = 1 for simplicity. Applying the ‘operator’ iγν

∂ν to both sides of this equation gives the second order equation

� γ0
� �2 ∂2

∂t2
þ γ1
� �2 ∂2

∂x2
þ . . .

� 	
ψ þ ½ðγ0γ1 þ γ1γ0Þ ∂0∂1 þ . . .�ψ ¼ m2

Dψ:

This must be the Klein–Gordon equation so we must have

ðγ0Þ2 ¼ 1; ðγ1Þ2 ¼ ðγ2Þ2 ¼ ðγ3Þ2 ¼ �1;

fγ0; γ1g ¼ fγ0; γ2g ¼ . . . ¼ fγ1; γ2g ¼ . . . ¼ 0; (11:98)

where

fγ μ; γvg � γ μγv þ γvγ μ: (11:99)

({A,B} =AB +BA is often called the anticommutator of A and B.) The second set of
equations (11.98) means that the coefficients γμ cannot be pure numbers, but they could
be matrices. In fact they can be 4× 4 matrices (but not 2× 2 ones), and a specific solution to
(11.98) is
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γ0 ¼

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0
BBBB@

1
CCCCA � 1 0

0 �1

 !
;

γ1 ¼

0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

0
BBBB@

1
CCCCA � 0 σ1

�σ1 0

 !
;

γ2 ¼

0 0 0 �i

0 0 i 0

0 i 0 0

�i 0 0 0

0
BBBB@

1
CCCCA � 0 σ2

�σ2 0

 !
;

γ3 ¼

0 0 1 0

0 0 0 �1

�1 0 0 0

0 1 0 0

0
BBBB@

1
CCCCA � 0 σ3

�σ3 0

 !
:

(11:100)

(In these equations all the matrices are 4× 4: the form of them given on the right is simply
easier to deal with.) With the definition (11.99), Equations (11.98) may be written

fγ μ; γvg ¼ �2ημ v (11:101)

(see (11.2)). Readers will doubtless enjoy checking the above equations and also convincing
themselves that there is no 2× 2 solution to (11.101). Since the gamma matrices are 4× 4 the
wave function ψ must have four components. Assuming the Dirac equation describes spin ½
particles (which it does, though this derivation does not make this clear) one might expect ψ to
have two components (spin up and spin down, jz=± ħ/2), so what is the significance of the
other two solutions? The answer is famous: they describe antiparticles – that is, particles of the
same mass and spin (½), but opposite electric charge (or other label, for example lepton
number L). The Dirac equation in fact describes particles and antiparticles together (electrons
and positrons, neutrinos and antineutrinos, etc.); it is not a single particle wave equation.

We now want to consider how the Dirac spinor ψ transforms under Lorentz transforma-
tions. It is useful first to express the commutation relations between the generators Ji and Ki

of rotations and Lorentz boost transformations, in a single equation. These generators were
introduced in Chapter 2 and the relevant commutation relations are shown in Equation
(2.35). Defining Jμν as follows:

Jμv : Jij ¼ εi jk Jk ; J0 i ¼ Ki; (11:102)

these commutation relations take the form

i ½J�l; Jμv� ¼ �η�μ Jlv þ η�v Jlμ � ηlv J�μ þ ηlμ J�v: (11:103)
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Homogeneous infinitesimal Lorentz transformations are of the form

x μ ! x0μ ¼ x μ þ δx μ; (11:104)

δx μ ¼ ωμ
v x

v; ωμv ¼ �ωvμ: (11:105)

For example an infinitesimal rotation about the z axis gives

x0 ¼ xþ yθ; y0 ¼ �xθ þ y ) δx ¼ yθ; δy ¼ �xθ ) ω12 ¼ θ ¼ �ω21:

A Lorentz boost along the x axis, on the other hand,

x0 ¼ γðxþ vtÞ; t0 ¼ γðt þ vx=c2Þ;
has the infinitesimal form

δx1 ¼ v

c
x0; δx0 ¼ v

c
x1 ) ω01 ¼ v

c
¼ �ω10;

and in both cases ωμν is antisymmetric, as in (11.105).
An infinitesimal Lorentz transformation on a scalar field �(x) is

�0ðxÞ ¼ 1� i
2
ωμvJμ v

� �
�ðxÞ; (11:106)

where, with ħ= 1,

Jμv ¼ �i ðxμ ∂v � xv ∂μÞ (11:107)

is the (relativistic) orbital angular momentum operator. For Dirac fields, however, with four
components, there is also a matrix contribution to Jμν, acting on and rearranging these
components. We denote this Σμν:

Jμ v ¼ �i ðxμ ∂v � xv ∂μÞ þ Σ μ v: (11:108)

Σμν must obey the commutation relations (11.103) and it is straightforward to check that

Σ μv ¼ i
4
½γμ; γv� (11:109)

does this: it represents the ‘intrinsic spin’ operator for the Dirac field. Our aim now is to write
down an expression for δψ(x), where ψ(x) is the Dirac spinor, under Lorentz transforma-
tions; and then let the parameters ωμν become functions of xμ, hence finishing up, as above,
with a covariant derivative to replace ∂μ.

But at this point it is necessary to take a step back and ask a rather basic question: how are
we to treat spinor fields in General Relativity? In particular, how are we to find covariant
derivatives for them? We are perfectly familiar with the construction of these for co- and
contra-variant vectors (vectors and 1-forms) and for mixed tensors of arbitary rank, but what
about spinors? This is a non-trivial problem whose origin lies in the fact that the group of
general coordinate transformations, which lies at the absolute foundation of General
Relativity, has vector and tensor representations, but not a spinor representation. In a
sense there was a similar situation with regard to rotations and Lorentz transformations:
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rotations are described by the group SO(3), of which there are vector and tensor, but not
spinor representations. The group SU(2), however, possesses spinor representations and is
homomorphic to SO(3). What is more, nature ‘recognises’ these spinor representations – see
Footnote 5 above. Unfortunately there is no such easy solution for General Relativity. The
group of general coordinate transformations is an infinite parameter group and there is no
way of finding a similar group with spinor representations. So we return to the question: how
do we treat spinor fields in General Relativity? The answer was provided by Weyl.6 One
constructs, at every point in space-time, a vierbein (or tetrad) field hμ

α. This is a set of four
orthonormal vectors hμ, the label α telling which vector, as discussed in Section 6.5 above.
These vectors define a frame, and because of the Equivalence Principle this frame can be
made inertial at every point. We have the relations

gμvðxÞ ¼ hμ
aðxÞ hvbðxÞ ηab ¼ hμ

aðxÞ hvaðxÞ; (11:110)

etaab ¼ hμaðxÞ hvbðxÞ gμvðxÞ ¼ hμaðxÞ hμbðxÞ; (11:111)

the raising and lowering of the indices a, b,… being performed with ηab and η
ab, and of the

indices μ, ν,…with gμν and g
μν, the inverses being defined in the usual way. These two types

of index have a different significance. The Greek indices (μ, ν etc.) are world indices, just as
xμ is a coordinate in the (curved) ‘world’ space-time. The Latin indices (a, b etc.) are tangent
space indices. The tangent space is flat – Minkowski – with metric ηab. Physical quantities
have separate transformation properties in world space and tangent space. The vierbein hμ

a

is a contravariant vector in world space and a covariant vector in tangent space.
Weyl’s proposal was that a Dirac spinor ψ transforms like a scalarwith respect to ‘world’

transformations

δψ ¼ ��μ ∂μψ; (11:112)

with ξμ=ωμ
ν x

ν, but a spinor with respect to Lorentz transformations in tangent space

δψ ¼ � i
2
ωab Σa b ψ: (11:113)

In the general case, then

δψ ¼ ��μ ∂μψ � i
2
ωab Σab ψ: (11:114)

Following the general philosophy of gauge theories we now take the parameters ξ μ and
ωab to be space-time dependent, though here we shall concentrate only on ωab, which then
becomes ωab(xμ). In general terms this programme was inspired by the work of Yang and
Mills and was embarked on by Utiyama, Sciama and Kibble.7 We shall outline the results
here; the reader is referred to these papers for more details. A Dirac spinor changes by an
amount (11.114) under Lorentz transformations, but whenωab→ωab(xμ) the derivative of ψ
will transform as

6 Weyl (1929, 1950). See also Weinberg (1972), Section 12.5.
7 Utiyama (1956), Kibble (1961), Sciama (1962).
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δðψ;μÞ ¼ � i
2

ωabΣa bðψ;μÞ þ ωab
;μ Σa b ψ

n o
; (11:115)

acquiring an anwanted term in ωab
,μ. We then replace this derivative by a ‘covariant

derivative’, denoted ψ|μ and assumed to be of the form

ψjμ ¼ ψ;μ þ 1=2Aab
μ Σabψ (11:116)

such that under Lorentz transformation

δðψjμÞ ¼ 1=2ωab Σa bðψjμÞ: (11:117)

These equations can be solved for Aab
μ, allowing the Dirac equation to be written down.

What is claimed is the the programme of gauging Lorentz symmetry results in a theory with
the same – or almost the same – structure as General Relativity; that it is a ‘back-door’ way
of arriving at space-time curvature. In support of this view is the fact that the commutator of
two covariant derivatives (11.116) turns out to be

ψjμv � ψjvμ ¼ �1=2Rab
μv Σabψ (11:118)

where

Ra
b μv ¼ Aa

b ν; μ � Aa
b μ; v þ Aa

cμ A
c
b v � Aa

cv A
c
bμ: (11:119)

This expression is of precisely the same form as the Riemann tensor. Assuming that it
actually is the Riemann tensor, or rather, that

R�
l μ v ¼ ha

�hblR
a
b μv (11:120)

is the Riemann tensor, it turns out that we have reproduced the key feature of Riemannian
geometry – the curvature tensor. It also, however, turns out that this approach has an
additional feature which General Relativity lacks, which is that the connection coefficients
Γλμν are not necessarily symmetric in their lower indices, Γλμν ≠Γλνμ. In that case we
would have a space-time with torsion as well as with curvature, the torsion tensor being
defined by

Sμ v
l ¼ 1=2 ðGl

μν � Gl
vμÞ: (11:121)

Moreover, just as the curvature of space-time is induced by mass, or more generally the
energy-momentum tensor,

1=2 g Tμ v ¼ ∂ℒ
∂gμν

;

the torsion of space-time is, in some theories, induced by spin

g τμ
� l ¼ ∂ℒ

∂Kl�
μ ;

where Kλκ
μ=Sλ

μ
κ+Sκ

μ
λ− Sλκ

μ is the so-called contorsion tensor and τμ
κλ is the spin angular

momentum density. Theories of this type result in a new spin–spin force of purely
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gravitational origin. Trautman has even speculated that such forces may avert gravitational
singularities.8

It is worth noting, as a final remark on gravitational theories with torsion (often called
Einstein–Cartan theories) that they often play a role in quantum theory. This should be clear
from the treatment above: the Dirac field is a four component field which serves as a basis
for a representation of the Lorentz group. That is, it belongs to a vector space, and vectors
(belonging to vector spaces) can be added – they obey the linear superposition principle,
which lies at the foundation of quantum mechanics. Consider even something as elementary
as the two-slit experiment, as explicated by Feynman:9 or, more simply, just note that the spin
operator is proportional to Planck’s constant – non-relativistically it is (ħ/2)σ i.

11.4 Dirac equation in Schwarzschild space-time

The Dirac equation in Minkowski space-time is (11.97), which on restoring factors of
ħ and c is

i �h γ μ ∂μψ ¼ �mD cψ: (11:122)

We must now replace the derivative ∂μψ by a covariant one, as in (11.116). Let us first write
∂μψ in terms of a ‘spinor 1-form’

dψ ¼ ∂μψ q μ; (11:123)

where the θ μ are basis 1-forms. The consequences of Weyl’s prescription (11.114) is that
instead of (11.123) we now have

dψ ! Dψ ¼ dψ � i
2
w� lΣ� lψ; (11:124)

where ωκλ is a connection 1-form, sometimes called the spinor connection (and is not to be
confused with the parameters ωκλ of a Lorentz transformation!). In terms of the basis forms
it may be expanded, as in Equation (3.171)

w�
l ¼ G�

lμq μ: (11:125)

With (11.109), then we have

Dψ ¼ ∂μψ þ 1=8G�lμ½γ�; γl�ψ
� �

q μ; (11:126)

where

G� l μ ¼ g� ρ Gρ
l μ; (11:127)

so the Dirac equation becomes

i �h γ μf∂μ þ 1=8G�lμ½γ�; γl�gψ ¼ mD cψ: (11:128)

8 Trautman (1973a). See also Kopczyński & Trautman (1992), Chapter 19.
9 Feynman et al. (1965), Chapter 1.
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There is one further modification to make, which is relevant to the way we shall perform the
calculation in Schwarzschild space. This is to replace the vector ∂μ, defined in a holonomic
(coordinate) basis, by eμ, defined in an anholonomic one. In fact we shall work in an
orthonormal basis, so (11.128) becomes

i �h γ μðeμ þ GμÞψ ¼ mD cψ; (11:129)

where

Gμ ¼ 1=8G� l μ½γ�; γl� (11:130)

and Γκλμ is given by (3.259).
Let us now find the Dirac equation in Schwarzschild space-time, with line element (5.37)

ds2 ¼ � 1� 2m

r

� �
c2 dt2 þ 1� 2m

r

� ��1

dr2 þ r2ðdθ2 þ sin2θ d�2Þ: (5:37)

Write this as

ds2 ¼ �ðq0Þ2 þ ðq1Þ2 þ ðq2Þ2 þ ðq3Þ2;
with

q0 ¼ c 1� 2m

r

� �1=2
dt; q1 ¼ 1� 2m

r

� ��1=2

dr; q2 ¼ rdθ; q3 ¼ r sin θ d�

(11:131)

and

gμ v ¼ ημ v; (11:132)

an orthonormal basis. The dual basis is clearly

e0 ¼ 1

c
1� 2m

r

� ��1=2 ∂
∂t
; e1 ¼ 1� 2m

r

� �1=2 ∂
∂r

; e2 ¼ 1

r

∂
∂θ

; e3 ¼ 1

r sin θ
∂
∂�

(11:133)

(and note that m ¼ MG

c2
, not the mass of the Dirac particle, which we have denoted mD).

Then the commutators of these vectors may be found; for example

½e0; e1� ¼ m

r2
1� 2m

r

� ��1=2

e0 ) C01
0 ¼ m

r2
1� 2m

r

� ��1=2

: (11:134)

The non-zero commutators turn out to be

C010 ¼ �m

r2
1� 2m

r

� ��1=2

¼ �C100;

C122 ¼ �C212 ¼ � 1

r
1� 2m

r

� �1=2
¼ C133 ¼ �C313;

C233 ¼ �C323 ¼ � cot θ
r

:

(11:135)

417 11.4 Dirac equation in Schwarzschild space-time



The quantities Γμνλ are then found from (3.259), appropriate to this orthonormal basis,

Gμ v l ¼ �1=2 ½Cμ v l þ Cv l μ � Cl μ v�; (11:136)

giving

G010 ¼ �G100 ¼ m

r2
1� 2m

r

� ��1=2

; G001 ¼ 0;

G122 ¼ �G212 ¼ G133 ¼ �G313 ¼ m

r2
1� 2m

r

� �1=2
; G221 ¼ G331 ¼ 0;

G233 ¼ �G323 ¼ cot θ
r

; G332 ¼ 0:

(11:137)

The quantites Γμ may then be found from (11.130):

G0 ¼ m

2r2
1� 2m

r

� ��1=2

α1;

G1 ¼ 0; G2 ¼ � im
2r2

1� 2m

r

� �1=2
Σ3;

G3 ¼ im
2r2

1� 2m

r

� �1=2
Σ2 � i cot θ

2r
Σ1;

(11:138)

where

α1 ¼ 0 σ1

σ1 0

� �
; Σi ¼ σi 0

0 σi

� �

are 4× 4 matrices. Substituting (11.138) and (11.133) into (11.129) and noting that

γ0α1 ¼ �γ1; γ2 Σ3 ¼ �γ3 Σ2 ¼ i γ1; γ3 Σ1 ¼ i γ2

gives the equation

i�h 1� 2m

r

� ��1=2
(

γ0
1

c

∂ψ
∂t

� m

2r2
γ1ψ

� 	
þ 1� 2m

r

� �1=2
γ1
∂ψ
∂r

þ γ2
1

r

∂ψ
∂θ

þ m

r2
1� 2m

r

� �1=2
γ1ψ þ γ3

1

r sin θ
∂ψ
∂�

þ cot θ
2r

γ2ψ

¼ mD cψ; (11:139)

for a Dirac particle of mass mD in a Schwarzschild field.

11.5 Five dimensions: gravity plus electromagnetism

In the early 1920s a number of people constructed models of ‘unified field theories’ – that is,
unifications of gravity and electromagnetism. Most of these have not stood the test of time,

418 Gravitation and field theory



largely because we now realise that unification is a greater task than was then thought; it
should now include QCD and electroweak theory. In 1921 Kaluza,10 however, constructed a
unified model (of gravity and electromagnetism) by extending the space-time manifold to
five dimensions, earning, in the process, praise from Einstein: ‘At first glance I like your
idea enormously’, he wrote. Klein later speculated that the fifth dimension might have
something to do with quantisation,11 and this joint theory became known as Kaluza–Klein
theory. Because the number of dimensions may in principle be extended beyond five, to
accomodate the other interactions beyond electromagnetism, enlarged versions of Kaluza–
Klein theory play a part in contemporary string theory. In this section we shall outline
Kaluza’s original proposal, restricted to five dimensions.

The rationale is to extend the line element

ds2 ¼ gμν dxμ dxν ðμ; ν ¼ 0; 1; 2; 3Þ
to a 5-dimensional manifold

ds2 ¼ γmn dx
m dxn ðm; n ¼ 0; 1; 2; 3; 5Þ (11:140)

where the new metric tensor is

γmn ¼

γ00 γ01 γ02 γ03 γ05
γ10 γ11 γ12 γ13 γ15
γ20 γ21 γ22 γ23 γ25
γ30 γ31 γ32 γ33 γ35
γ50 γ51 γ52 γ53 γ55

0
BBBB@

1
CCCCA ¼ γμν γμ5

γ5ν γ55

� �
: (11:141)

Under general 5-dimensional coordinate transformations

γ0mn ¼
∂xp

∂x0m
∂xq

∂x0n
γpq: (11:142)

Consider translations in the fifth dimension

x0μ ¼ x μ; x0 5 ¼ x5 � f ðx μÞ; (11:143)

then

∂xv

∂x0μ
¼ δνμ;

∂xμ

∂x05
¼ 0;

∂x5

∂x0μ
¼ ∂μ f ;

∂x5

∂x05
¼ 1;

and hence

γ0μ 5 ¼ γμ 5 þ ð∂μf Þγ55: (11:144)

Similarly we find

γ055 ¼ γ55:

10 Kaluza (1921).
11 Klein (1926).
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Putting

γμ5 ¼ γ5μ ¼ Aμ; γ55 ¼ 1 (11:145)

then (11.144) becomes

A0
μ ¼ Aμ þ ∂μ f ; (11:146)

a gauge transformation in electrodynamics, under which Fμν, and therefore the electric
and magnetic fields, are invariant. We also find, under (11.143),

γ0μν ¼ γμν þ Aνð∂μf Þ þ Aμð∂νf Þ þ ð∂μf Þð∂νf Þ:
But also g0μν=gμν so (gμν+Aμ Aν) transforms in this way, and we may therefore identify

γμν ¼ gμ ν þ Aμ Aν (11:147)

and write the 5× 5 metric tensor γmn in the form

γmn ¼ gμ ν þ AμAν Aμ

Aν 1

� �
: (11:148)

We have succeeded then in relating translations in the fifth dimension to gauge trans-
formations in electrodynamics. We now have to consider the theories of General Relativity
and electrodynamics themselves and discover how this 5-dimensional formulation will
relate them. We shall work at the level of the integrands of the actions of the theories. As
we saw in (8.21) the integrand of the Einstein action is the curvature scalar R, which we
shall here denote �R, the overbar denoting that the quantity is a strictly 4-dimensional one.
The symbol R will now refer to the 5-dimensional scalar, and what we shall show is that

R ¼ �Rþ 1=4Fμ ν F
μ ν; (11:149)

the second term being the Maxwell action – see (11.23) above. A direct calculation with γmn
above is rather messy; it is better to work with differential forms in an orthonormal basis.12

The 5-dimensional line element is

ds2 ¼ γmn dx
m dxn ¼ ðgμ ν þ AμAνÞ dx μ dxν þ 2Aμ dxμ dx5 þ ðdx5Þ2

¼ gμ ν dx μ dxν þ ðdx5 þ Aμ dx μÞ2:
Writing gμν in terms of the vierbein hμ

a,

gμ ν ¼ hμ
a hν

bηa b; (11:150)

and putting

qa ¼ hμ
a dx μ; q5 ¼ dx5 þ Aμ dx μ � dx5 þ Aa qa (11:151)

gives

ds2 ¼ qa qb ηab þ ðq5Þ2 ¼ γAB q
A qB; (11:152)

12 We follow here the method of Thirring (1972).
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with

γAB ¼ ηab 0
0 1

� �
: (11:153)

The indices

A; B ¼ 0; . . . ; 5 and a; b ¼ 0; . . . ; 3 (11:154)

are cotangent space indices. We must now find the connection forms ωAB as a preliminary
to finding the curvature tensor. We use the Cartan structure equations (3.182)

dqA þ wA
B ^ qB ¼ 0; wAB ¼ �wBA: (11:155)

With A = 5 they give

dq5 ¼ �w5
a ^ qa; (11:156)

but on the other hand, from (11.151)

dq5 ¼ Aa;b qb ^ qa ¼ 1=2Fab qa ^ qb; (11:157)

from which we find the connection form

w5
a ¼ 1=2Fab q b: (11:158)

The basis form θa in (11.152) is intrinsically 4-dimensional, so we may write

qa ¼ hμ
a dx μ ¼ �qa; (11:159)

an overbar, as before, denoting an intrinsically 4-dimensional quantity. On taking the
exterior derivative of this equation we have, from (11.155)

dqa ¼ �wa
A ^ qA ¼ �wa

b ^ qb � wa
5 ^ q5

¼ �wa
b ^ qb þ 1=2 ðFa

b qbÞ ^ q5

¼ �ðwa
b þ 1=2Fa

bq5Þ ^ qb: (11:160)

On the other hand we may put

d�qa ¼ ��wa
b ^ �qb ¼ ��wa

b ^ qb;

thus defining the intrinsically 4-dimensional connection form �wa
b. A comparison of these

equations yields

wa
b ¼ ��wa

b � 1=2Fa
b q5: (11:161)

Now use the second Cartan structure equation

dwAB þ wAC ^ wC
B ¼ 1=2RABCD qC ^ qD; (11:162)

where RABCD is the 5-dimensional Riemann curvature tensor. From (11.161) we have,
using (11.157)
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dwab ¼ d�wab � 1=2Fab;c qc ^ q5 � 1=2Fabð1=2FcdÞ qc ^ qd ;

so the left hand side of (11.162) is, with A = a and B = b, and using (11.158),

dwab þ wac ^ wc
b þ wa5 ^ w5

b

¼ d �wa
b � 1=2Fabc qc ^ q5 � 1=2Fab Fcd qc ^ qd

þ ð�wac � 1=2Fac q5Þ ^ ð�wc
b � 1=2Fc

b q5Þ þ ð�1=2Fac qcÞ ^ ð1=2Fbd qdÞ:
(11:163)

The right hand side of (11.162) is, again with A = a and B = b,

1=2Rabcdqc ^ qd þ Rabc5 qc ^ q5: (11:164)

Comparing these equations we may find Rabcd by looking at the coefficients of θc∧θd.
Writing the contribution to Rabcd which comes purely from 4-dimensional quantities as
�Rabcd , we can separate out the contribution which comes from the fifth dimension:

1=2Rabcd ¼ 1=2�Rabcd � 1=4Fab Fcd � 1=8ðFac Fbd � Fad FbcÞ
and hence

1=2Rab
ab ¼ 1=2 �Rab

ab � 1=4Fab Fab þ 1=8Fab Fab ¼ 1=2 �Rab
ab � 1=8Fab Fab: (11:165)

In a similar way, putting A=a, B = 5 in (11.162) gives, for the left hand side

dwa5 þ wab ^ wb
5

¼ �1=2Fab;c qc ^ qd � 1=2Fabð��wb
c ^ qcÞ þ ð�wab � 1=2Fab q5Þ ^ ð�1=2Fb

c qcÞ:
The right hand side is

1=2Ra5cd qc ^ qd þ Ra5c5 qc ^ q5;

and following the same logic as before, looking at the coefficients of θc ∧ θ5 in these
equations gives

Ra5c5 ¼ �Ra5c5 � 1=4Fab F
b
c;

hence

Ra5
a5 ¼ �Ra5

a5 � 1=4Fa
b F

b
a ¼ �Ra5

a5 þ 1=4Fab Fab: (11:166)

The Lagrangian in the 5-dimensional theory is

R ¼ RAB
AB ¼ Rab

ab þ 2Ra5
a5: (11:167)

This will receive contributions from the 4-dimensional sector and from the fifth dimension.
Distinguishing these, as above, by an overbar gives, from (11.165) and (11.166)

R ¼ �R� 1=4Fab Fab þ 1=2Fab Fab ¼ �Rþ 1=4Fab Fab: (11:168)

This, then, is the result of this theory: the action of the 5-dimensional theory is simply
the sum of the actions for General Relativity and Maxwell’s electrodynamics. This is, of
course, a remarkable result, but a disappointment is that it does not amount to a unified
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theory – gravity and electrodynamics separate out, like oil and water. There is no ‘coupling’
between them. If there were cosmic ‘switches’ allowing the different interactions in nature
to be switched on and off at will, gravity could still be switched off without affecting
electromagnetism, and vice versa. Pauli is reputed to have remarked, as an ironic variation
on the words of the priest at a wedding service, ‘Let not man unite what God has put
asunder’.

In this chapter we have considered a few of the topics that have appeared on the agenda
since Einstein’s day, as a consequence of his great theory. There are, of course other
questions raised by General Relativity, perhaps the most famous of which is quantum
gravity. How should a quantum theory of gravity be constructed? There is as yet no
generally agreed answer to this question, but many clever people have devoted many
years to thinking about it. At the end of an introduction to Einstein’s theory, however, it is
best not immediately to start thinking about the next challenge. Like a climber who has
arrived at the top of his mountain, we should simply sit down and admire the view. Is it not
absolutely remarkable that Einstein was able to create a new theory of gravity in which the
geometry of space itself became a part of physics? Whatever would Euclid have thought?

Further reading

A good account of gauge invariance in electrodynamics is to be found in Aitchison & Hey
(1982). Readers who wish to familiarise themselves with some particle physics will find
good accounts in Burcham & Jobes (1995), Perkins (2000) and, at a slightly higher level,
Cottingham & Greenwood (1998). An excellent, though largely non-mathematical account
of gauge fields will be found in Taylor (2001) and an account of the mathematical basis of
gauge field theory, including their fibre bundle formulation, is Healey (2007).

For more information on the relation between SO(3) and SU(2) and between spinors and
vectors see for example Sakurai (1994), Chapter 3, or Ryder (1996) Chapter 2. Good
accounts of non-abelian gauge theory appear in Rubakov (2002) and Maggiore (2005);
see also Aitchison & Hey (1982), Cheng & Li (1984), Ryder (1996) and Srednicki (2007).
An extended treatment of the formal mathematical approach to gauge theories and General
Relativity may be found in Frankel (1997); see also Göckeler & Schücker (1987) and
Nakahara (1990). A review of Poincaré gauge theory appears in Blagojević (2002). Good
accounts of the Dirac equation may be found in, for example, Bjorken & Drell (1964),
Itzykson & Zuber (1980), Brown (1992), Gross (1993) or Huang (1998). Good introduc-
tions to theories of space-time with torsion are Hehl & von der Heyde (1973) and Hammond
(1994, 1995). More complete accounts may be found in Hehl (1973, 1974); see also
Trautman (1973b), Hehl et al. (1976) and Shapiro (2002). The Dirac equation in a gravita-
tional field is treated by Brill & Cohen (1966), Chapman & Leiter (1976) and Sexl &
Urbantke (1983).

There are accounts of Kaluza–Klein theory in Bergmann (1942), Pauli (1958) and Pais
(1982). A review of the generalisations of this theory to higher dimensions is Bailin & Love
(1987).
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Problems

11.1 Show that, with Rz(α) and Jz given by (11.44) and (11.47),

RzðαÞ ¼ expðiJzαÞ:
11.2 Show that

exp½i n:s ðα=2Þ� ¼ cosða=2Þ þ i n:s sinðα=2Þ:
11.3 Show that under the gauge transformation U, given by (11.72), the field tensor Fμν,

given by (11.84), transforms as in (11.87):

Fμν ! U Fμν U
�1:

11.4 Find the Dirac equation in Minkowski space in spherical polar coordinates.
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